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Plasmodium falciparum response mechanisms to the major artemisinin-based combination therapies (ACTs)
are largely unknown. Multidrug-resistance protein (MRP)–like adenosine triphosphate (ATP)–binding cassette
transporters are known to be related to multidrug resistance in many organisms. Therefore, we hypothesized
that sequence variation in pfmrp1 can contribute to decreased parasite sensitivity to ACT. Through sequencing
of the pfmrp1 open reading frame for 103 geographically diverse P. falciparum infections, we identified 27
single-nucleotide polymorphisms (SNPs), of which 21 were nonsynonymous and 6 synonymous. Analyses of
clinical efficacy trials with artesunate-amodiaquine and artemether-lumefantrine detected a specific selection
of the globally prevalent I876V SNP in recurrent infections after artemether-lumefantrine treatment. Additional
in silico studies suggested an influence of variation in amino acid 876 on the ATP hydrolysis cycle of pfMRP1
with potential impact on protein functionality. Our data suggest for the first time, to our knowledge, the
involvement of pfMRP1 in P. falciparum in vivo response to ACT.

Plasmodium falciparum malaria remains a major public

health problem. Recent findings, however, support the

idea that new control strategies, including artemisinin-

based combination therapy (ACT) and strengthened

vector control, may provide a dramatic reduction in

the burden of disease [1]. ACT has proven to be high-

ly powerful for effective management of malaria, rap-

idly becoming a central tool for the control of the dis-

ease worldwide [2]. Development of resistance to ACT

would have serious global public health consequences,

similar to the failure of chloroquine as the mainstay
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antimalarial on the African continent during the 1980s

and 1990s [3]. It is therefore critical to understand the

mechanisms of ACT drug resistance at an early stage

and find molecular markers that can be used as tools

for monitoring the rise and spread of resistance. In this

work, the possible involvement of multidrug-resistance
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Table 1. Primers for pfMRP1 Polymerase Chain Reaction, Se-
quencing, and Pyrosequencing

This table is available in its entirety in the online
version of Journal of Infectious Diseases.

protein (MRP) homologues in the in vivo response to ACT

was explored.

MRPs are members of the ATP-binding cassette (ABC) trans-

porter superfamily [4]. These proteins are able to transport a

large variety of substrates across membranes against a concen-

tration gradient, in an energy-dependent reaction requiring

ATP hydrolysis. Importantly, they transport xenobiotics and

are thereby major contributors to drug resistance in a large

range of organisms, including human tumor cells [5], bacteria

[6], and parasites [7].

P. falciparum harbors 2 MRP homologues [8]. In this study,

we focused on the pfmrp1 gene, which codes for pfMRP1

(PFA0590w), an 1822–amino acid protein situated in the par-

asite plasma membrane [9]. Little was known about the possible

role of MRPs in P. falciparum drug resistance. Previously, only

an association of the pfmrp1 SNPs Y191H and A437S with

chloroquine and quinine in vitro sensitivity was reported [10],

which could not be confirmed by others [11]. However, recent

findings show that disruption of pfmrp1 in the P. falciparum

parasite W2 renders the parasite more sensitive to several an-

timalarial drugs, including chloroquine, quinine, and artemis-

inin. The pfmrp1 knockout also accumulates more chloroquine

and quinine, thus suggesting that pfMRP1 plays a role in par-

asite drug sensitivity through efflux of drugs [12].

Here we tested the hypothesis that an MRP protein con-

tributes to the development of ACT resistance in vivo by ex-

amining the global biodiversity of the pfmrp1 gene to identify

new SNPs and furthermore by analyzing clinical isolates from

2 ACT efficacy trials conducted in East Africa before the im-

plementation of these drugs. We searched for possible selection

of pfmrp1 SNPs after drug administration, as was done to es-

tablish pfmdr1 polymorphisms as modulators of lumefantrine

[13, 14] and amodiaquine [15] susceptibility in vivo. The com-

bination therapies tested in the clinical trials were artesunate-

amodiaquine (ASAQ) and artemether-lumefantrine (AL) (Co-

artem; Novartis), presently the major ACTs in wide-scale use

in Africa. We also studied the impact of the main identified SNP

on the protein structure in silico.

MATERIALS AND METHODS

Patients and culture-adapted P. falciparum parasites. The

pfmrp1 open reading frame (ORF) was sequenced for 103 P.

falciparum–positive blood samples of different geographical or-

igins. The samples were partly collected from travelers return-

ing to Sweden with clinical malarial infections ( ) [16]n p 35

after having visited Colombia (1), Suriname (1), Gambia (6),

Guinea-Bissau (1), Guinea-Conakry (1), Liberia (2), Burkina

Faso (1), Ghana (2), Togo (1), Benin (1), Nigeria (1), Cameroon

(1), Namibia/Angola (1), Zimbabwe/Namibia (1), Zambia (1),

Sudan (1), Malawi (1), Burundi (1), Central East Africa (1),

Uganda (5), Kenya (1), Mozambique (1), Yemen (1), and Thai-

land (1). Additional patient samples originated from clinical

studies conducted in Iran (4) [17], in Guinea-Bissau (5) [18],

in Mali (2) [19], in Zanzibar (2) and at the Burma/Thailand

border (13) and from malariometric surveys performed in

Cambodia (15), Papua New Guinea (5), and Vanuatu (10).

Finally, 12 culture-adapted P. falciparum parasite lines from

Colombia with in vitro–determined median inhibitory con-

centration to amodiaquine and desethylamodiaquine [20] were

also analyzed.

Samples from 2 clinical efficacy trials were included in an

assessment of parasite polymorphisms and treatment outcome.

The first trial, denoted ACO, was performed in Zanzibar from

October 2002 through February 2003 and included 2 treatment

arms comparing AL ( ) and ASAQ ( ) in chil-n p 200 n p 208

dren with uncomplicated malaria [21]. The second trial, here-

in named FUKA, was conducted from April through July 2004

in Fukayosi, Tanzania, and included 2 arms comparing AL

( ) and sulfadoxine-pyrimethamine ( ) [22]. Bothn p 50 n p 56

studies had 42 days of follow-up after treatment. Blood was

collected on filter papers at baseline and during follow-up.

Because the intention was to assess the selection of SNPs upon

ACT treatment, we analyzed all baseline infections but only the

recurrent infections after ASAQ and AL treatment. The genetic

region around amino acids 191 and 437 in pfMRP1 was se-

quenced in 70 samples from the ACO study and 30 from the

FUKA study, because SNPs in these positions were previously

identified in Kenya [23]. All blood samples analyzed in this

report have been collected in studies that have been individu-

ally cleared by appropriate ethical authorities locally and/or in

Sweden. All samples were obtained after receiving informed

consent from the patients or their guardians.

DNA extraction. Genomic DNA was extracted from whole

blood or from blood spotted on filter paper by using the

QIAamp DNA Blood Mini kit (Qiagen) or the ABI PRISM

6100 Nucleic Acid PrepStation (Applied Biosystems), according

to methods described elsewhere [24].

Sequencing of pfmrp1 ORF. The pfmrp1 gene ORF was

amplified by a long polymerase chain reaction (PCR) method

modified from that of Sakihama et al [25]. The 5770-bp PCR

product was used as a template for additional nested PCR am-

plifications. PCR and sequencing primers are described in Table

1. The obtained amplicons were sequenced by using the DYEn-

amic ET Dye Terminator Cycle Sequencing kit for MegaBACE

DNA Analysis systems. The sequence reaction was followed by

analysis on a MegaBACE 1000 devise (Amersham Bioscience).
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Figure 1. Predicted 2-dimensional transmembrane domain organization by the HMMTOP algorithm (version 2) and single-nucleotide polymorphism
(SNP) distribution in pfMRP1. NBD, nucleotide binding domain; nsSNP, nonsynonymous SNP; TM, transmembrane domain.

A minor part of the sequences were sent to Macrogen Inc. for

sequencing.

Pyrosequencing. The main identified SNPs in Africa,

A2626G and A4397G (amino acid changes I876V and K1466R,

respectively), in pfmrp1 were analyzed by a pyrosequencing

method modified from Dahlström et al [24] with the specific

primers described in Table 1. A mixed genotype infection was

defined as a pyrosequencing result between 10% and 90% for

both genotypes, and a single-genotype (pure) infection was

either above 90% or below 10%.

Bioinformatic and statistical analyses. The pfMRP1 sec-

ondary structure was predicted with the HMMTOP algorithm

(version 2). The pfMRP1 structure (Figure 1) was derived from

hydropathy plots generated with the HMMTOP algorithm (ver-

sion 2) [26, 27]. Sequencher software (versions 4.5 and 4.6)

(Gene Codes Corporation) was used to analyze the sequences,

with the 3D7 sequence of PFA0590w from PlasmoDB (http://

plasmodb.org/) as the reference. The potential phenotypic con-

sequences of the pfMRP1 SNPs were analyzed with the Poly-

Phen (http://genetics.bwh.harvard.edu.pph/) and SIFT (http://

blocks.fhcrc.org/sift/SIFT.html) programs. The 2-tailed Fisher

exact test was used to evaluate the difference in SNP prevalence

between the baseline and recurrent infections. The x2 test com-

paring observed and expected frequencies was used to test for

an association between pfmrp1 I876V and the previously an-

alyzed pfmdr1 N86Y and pfcrt K76T SNPs [13, 28]. Statistical

calculations were performed with QuickCalcs software (Graph-

Pad; http://graphpad.com/quickcalcs/).

Structure and function analysis. To study the influence of

the residue at amino acid position 876 on pfMRP1 function-

ality, we based our analysis on homologous regions of the crys-

talographically well-studied bacterial ABC transporter MsbA.

Crystal structures trapped in different conformations were used

from Escherichia coli (MsbA-EC) 3B5W (open apo), Vibrio chol-

erae (MsbA-VC) 3B5X (closed apo), and Salmonella typhi-

murium (MsbA-ST) in conformation with adenylyl-imidodi-

phosphate (AMPPNP), 3B60, or with adenosine diphosphate

(ADP) vanadate, 3B5Z. Protein backbone and side-chain co-

ordinates were generated by the MaxSprout tool at the Eu-

ropean Bioinformatics Institute of the European Molecular

Biology Laboratories [29]. Sequence analysis was performed

with the Multialign server (http://mendel.ethz.ch:8080/Server/
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Table 2. Polymorphisms Identified in the pfMRP1 Gene by Sequencing and Their Geographical Source and Frequency

Nucleotide
position

Triplet
nucleotide

change

Amino
acid

position

Amino
acid

change Geographical source (proportiona)

109 CCGrTCG 37 PrS PNG (3/5)
300 GCArGCT 100 syn Thailand (1/13)
571 CATrTAT 191 HrY Iran (4/4), Thailand (12/14), Cambodia (13/15), PNG (4/5), Vanuatu (10/10)
604 AAArGAA 202 KrE PNG (3/5)
830 GATrGGT 277 DrG Mali (1/2)
924 ATTrATC 308 syn Zanzibar (1/66)b

942 CCGrCCC 314 syn Ghana (1/2)
974 AATrAGT 325 NrS Thailand (2/14), Cambodia (3/15)
1140 TATrTAC 380 syn Thailand (1/14)
1145 GATrGGT 382 DrG Zanzibar (1/66)b

1309 TCArGCA 437 SrA Tanzania (1/28)b, Zanzibar (1/66)b, Iran (4/4), Thailand (11/13), Cambodia (11/13), PNG (4/5),
Vanuatu (10/10)

1316 TCCrTTC 439 SrF Zanzibar (1/66)a

1514 ATTrACT 505 IrT Zambia (1/1)
1716 TTCrTTG 572 FrL Thailand (6/14), Cambodia (3/13)
2353 CATrAAT 785 HrN Thailand (7/13), Cambodia (7/14)
2626 ATArGTA 876 IrV Gambia (1/5), Malawi (1/1), Uganda (3/5), Kenya (1/1), Zanzibar (1/1), Iran (2/4), Thailand

(11/13), Cambodia (10/13), PNG (4/5), Vanuatu (9/9)
3020 ACGrATG 1007 TrM Thailand (6/13), Cambodia (8/14)
3144 ins AATAAT 1048 ins NN Namibia/Angola (1/1)
3603 GAArGAG 1201 syn Thailand (1/14)
3742 AATrGAT 1248 NrD Thailand (1/14)
3999 TCGrTCT 1333 syn Thailand (1/14)
4015 GCArTCA 1339 ArS Iran (1/3)
4168 TTTrATT 1390 FrI Gambia (1/6), Iran (1/4), Thailand (5/14), Cambodia (2/15), PNG (3/5), Vanuatu (10/10)
4292 AAArATA 1431 KrI Vanuatu (6/8)
4397 AAArAGA 1466 KrR Malawi (1/1), Guinea-Conakry (1/1), Ghana (1/2), Benin (1/1), Uganda (2/5), Kenya (1/1),

PNG (2/3)
4451 GAArGGA 1484 ErG Thailand (1/14), Cambodia (1/13)
4799 TCTrTTT 1600 SrF Thailand (1/13)
5006 GGTrGAT 1669 GrD Thailand (1/14)

NOTE. The 3D7 sequence of PFA0590w from PlasmoDB (http://plasmodb.org/) was used as the wild-type reference. ins, insertion; nucl., nucleotide; PNG,
Papua New Guinea; syn, synonymous.

a No. of samples with pure plus mixed infection with the polymorphism per the total no. of successfully sequenced samples at the position.
b These samples were sequenced only around amino acid positions 191 and 437.

MultAlign.html), and the programs WinCoot (version 0.3.3)

[30] and Yasara (version 8.11.11; http://www.yasara.org) were

used for structural analysis. Using homology modeling, the

pfMRP1 amino acid 876 was localized between the LSGGQ

motif and the H loop in the nucleotide-binding domain (NBD).

The 2 helices and the connecting loop in this region were

analyzed for conformational changes, and different structures

were superimposed with the Mustang algorithm [31]. ATP and

Mg2+ were located by superimposing the 3B60 structure on the

cystic fibrosis transmembrane conductance regulator (CFTR)

(1R10) structure (root mean square deviation, 1.185 Å). The

I876V SNP was studied in a model generated for the pfMRP1

residues 867–894 segment that was based on the crystal struc-

tures of NBD sequence alignment in structure 3B60, using

SCWRL2.8 [32] to make side-chain adjustments for the amino

acid substitutions. DFprot software (http://sbg.cib.csic.ed/Soft-

ware/DFprot/) [33] was used for flexibility and mobility anal-

ysis of primary sequences containing 876I or 876V.

RESULTS

The several algorithms for hydropathy profile determination

generally suggested that pfMRP1 is composed of a core domain

of 12 transmembrane helices distributed in 2 membrane-span-

ning domains (MSDs), each followed by an NBD (Figure 1),

confirming previous in silico analysis of the predicted coded

protein [9].

The pfmrp1 ORF was sequenced for 103 P. falciparum in-

fections originating from most regions in which malaria is en-

demic (GenBank accession numbers FJ477732–FJ477834). More

than 90% of the gene was successfully sequenced in 63 (61%)

of 103 samples. The genetic regions around pfMRP1 amino acid
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Table 3. Frequencies of Genotypes at pfMRP1 Amino Acid Positions 876 and 1466 at Baseline and on
Recurrent Days in the Artemisinin-Based Combination Therapy (ACT) Efficacy Trials

ACT (clinical trial)

876 allele amino acid: no./total no.,
frequency

1466 allele amino acid: no./total no.,
frequency

Baselinea Recurrent days Baselinea Recurrent days

ASAQ (ACO) I: 309/402, 0.769 I: 52/67, 0.776 K: 178/369, 0.482 K: 21/47, 0.447
V: 43/402, 0.107 V: 8/67, 0.119 R:51/369, 0.138 R: 8/47, 0.172
I+V: 50/402, 0.124 I+V: 7/67, 0.105 K+R: 140/369, 0.379 K+R: 18/47, 0.383

AL (ACO) I: 309/402, 0.769 I: 35/38, 0.921b K: 178/369, 0.482 K: 18/31, 0.581
V: 43/402, 0.107 V: 1/38, 0.026 R:51/369, 0.138 R: 8/31, 0.258
I+V: 50/402, 0.124 I+V: 2/38, 0.053 K+R: 140/369, 0.379 K+R: 5/31, 0.161

AL (FUKA) I: 75/104, 0.721 I: 33/38, 0.868 K: 52/101, 0.515 K: 23/37, 0.622
V: 13/104, 0.125 V: 1/38, 0.026 R: 25/101, 0.248 R: 4/37, 0.108
I+V: 16/104, 0.154 I+V: 4/38, 0.105 K+R: 24/101, 0.238 K+R: 10/37, 0.270

AL (ACO+FUKA) I: 384/506, 0.759 I: 68/76, 0.895b K: 230/470, 0.489 K: 41/68, 0.603
V: 56/506, 0.111 V: 2/76, 0.026 R: 76/470, 0.162 R: 12/68, 0.177
I+V: 66/506, 0.130 I+V: 6/76, 0.079 K+R: 164/470, 0.349 K+R: 15/68, 0.221

NOTE. ACO and FUKA are the efficacy trials in Zanzibar and Tanzania, respectively. AL, artemether-lumefantrine; ASAQ,
artesunate-amodiaquine; I, isoleucine; K, lysine; R, arginine; V, valine.

a The frequency prior to administration of drug (baseline) is based on samples from all of the patients enrolled in the
study, independent of which treatment arm they were allocated to.

b The 2-tailed Fisher exact test ( ) was used to evaluate the difference in single-nucleotide polymorphism prevalenceP ! .05
between the baseline and recurrent infections. Our statistical analyses were based on the pure selected genotype vs the
unselected genotype together with the mixed genotypes.

positions 191 and 437 were successfully sequenced in 66 of 70

samples from Zanzibar (ACO) and 28 of 30 samples from main-

land Tanzania (FUKA).

A total of 21 nonsynonymous and 6 synonymous SNPs were

identified in pfmrp1 (Table 2). An insert of 2 asparagines was

also found in a region of asparagine repeats downstream of

amino acid 1048, in 1 sample. The distribution of the identified

SNPs suggests geographic region specific characteristics. Four-

teen nonsynonymous SNPs were detected only in samples from

Asia and Oceania, and no polymorphisms were observed in the

South American samples. The previously identified SNPs at

positions 191 and 437 were present at high frequencies in Asia

and Oceania, whereas in Africa the H191Y SNP was not found

and S437A was identified only in 2 samples with mixed alleles.

The most common nonsynonymous SNPs in Africa were in-

stead I876V and K1466R (Table 2). I876V was the most widely

spread SNP, being present in Asian, African, and Oceanian

parasite populations. This SNP is located in the predicted

NBD1 of the protein, adjacent to the predicted Walker B mo-

tif (Figure 1).

When comparing the alterations in pfMRP1 identified here

with the protein sequences of ABC transporters from P. falci-

parum and other parasites, I505T and T1007M were the only

SNPs predicted by SIFT algorithms to potentially affect the

function of pfMRP1. The I505T SNP was identified in only 1

sample from Zambia. The T1007M SNP was seen in 14 (52%)

of 27 of the samples from Cambodia and Thailand. In contrast

to the SIFT analysis, the PolyPhen analysis did not classify any

of the SNPs as deleterious to the pfMRP1 function.

The main African SNPs— I876V and K1466R—were further

analyzed in samples from the clinical trials ACO and FUKA.

In ACO, there was a statistically significant positive selection

of the pure 876I allele in the recurrent infections of the AL

arm that was found in 35 (92.1%) of 38 recurrent infections

compared to 309 (76.9%) of 402 baseline infections (2-tailed

Fisher exact test, ). Accordingly, the same tendencyP p .038

was observed in FUKA, with the pure 876I increasing from 75

(72.1%) of 104 at baseline to 33 (86.8%) of 38 in the AL

recurrent infections (2-tailed Fisher exact test, ). WhenP p .079

pooling data from the 2 studies, a statistically significant se-

lection of the pure 876I (75.9% vs 89.5%) (2-tailed Fisher exact

test, ) was observed after AL treatment (Table 3). ThereP p .007

were no statistically significant changes in frequency of 876I in

the ASAQ arm. No significant association was observed be-

tween I876V and the previously analyzed pfmdr1 amino acid

position 86 or pfcrt amino acid position 76, in either the ACO

[13] or FUKA [28] trials. There were no statistically significant

changes in the prevalence of the K1466R SNP in the AL arms

or the ASAQ arm (Table 3).

Analysis of the different NBD crystal reference structures of

the MsbA ABC transporter highlighted the conformational

changes in the region between the LSGGQ motif and the H

loop needed to create the binding pocket for ATP docking in

the MsbA transporter. From the open-apo state to the ATP

D
ow

nloaded from
 https://academ

ic.oup.com
/jid/article-abstract/200/9/1456/852244 by B-O

n C
onsortium

 Portugal user on 13 June 2019



pf MRP1 and ACT in Africa • JID 2009:200 (1 November) • 1461

Figure 2. Mobility of the different nucleotide-binding domain (NBD) structures of MsbA, between the LSGGQ motif and the H loop. A, Escherichia
coli (MsbA-EC) 3B5W (open apo). B, Vibrio cholerae (MsbA-VC) 3B5X (closed apo). C, Salmonella typhimurium (MsbA-ST) in conformation with adenylyl-
imidodiphosphate (3B60). D, Salmonella typhimurium (MsbA-ST) in conformation with adenosine diphosphate (ADP) (3B5Z). Distances between helices
appear in angstroms. Alanine denotes the amino acid homologous to 876 in pfMRP1. E, Superimposition of MsbA open-apo structure (green) and
adenosine triphosphate (ATP) binding structure (blue). The yellow atom shows the magnesium bridge between side chains of the acidic residues (blue),
homologous to residues 874 and 875 in pfMRP1, and the ATP molecule.

Figure 3. Alignment of MsbA protein sequences from crystal structures Escherichia coli (MsbA-EC) 3B5W (open apo), Vibrio cholerae (MsbA-VC)
3B5X (closed apo), and Salmonella typhimurium (MsbA-ST) in conformation with adenylyl-imidodiphosphate (3B60) and adenosine diphosphate vanadate
(3B5Z). The red box shows the sequence of the structures of the MsbA transporters analyzed here. pfMRP1 sequence was modeled as shown in the
alignment (see Figure 4). The asterisk (*) identifies position 876 in the pfMRP1 protein.

binding, we detected that helices between the LSGGQ motif

and the H loop move apart, according to the measure of the

distance between residues 495L and 525E (located in the dif-

ferent helices). Our analysis proposes a gradual increase in the

distance between helices that follows the MsbA transporter

functionality cycle: from the open-apo to the closed-apo state,

there was a calculated increase from 8.92 to 9.53 Å in the distance

(Figures 2A–2B). This was significantly increased to 14.03 Å when

the transporter moved from the closed-apo state to nucleotide-

binding state (Figure 2C). The distance between helices decreases

when comparing the ATP-binding structure (14.03 Å) with the

ADP-binding structure (12.47 Å) (Figure 2D), indicating a return

to the transporter’s open state and bringing the helices together

and starting a new transport cycle. These events were followed

by a conformational change in the connecting loop that twists

and moves back toward the helices (Figure 2). The superim-

position of the open apo and the nucleotide-binding structures

summarizes the conformational changes needed for ATP docking

and shows the mobility of the alanine residue corresponding to

the 876 position in pfMRP1. Superimposition of the 3B60 struc-
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Figure 4. Side-chain contact between positions 876 and 873 in pfMRP1 protein. A, van der Waals radius of 876V side-chain contact with 873L.
B, van der Waals radius of 876I side-chain contact with 873L.

ture in CFTR 1R10 indicates the importance of the acidic residues

505D and 506E, homologous to residues 874 and 875 in pfMRP1

(Figure 3), in ATP binding through the Mg2+ bridge (Figure 2E).

To study the possible implications of the previous analysis

for the pf MRP1 I876V polymorphism, we created a model of

the protein region harboring the amino acid 876 position

from the 3B60 MsbA homologous region (Figure 3). Since

mobility and flexibility analysis using DFprot software showed

no significant difference in the backbone structure character-

istics (data not shown), we analyzed the side-chain contacts of

amino acids 876I and 876V. The conformation of acidic resi-

dues 875 and 874 favors the approximation of the side chains

of residues 876 and 873 (Figure 2E). The valine residue at

position 876 created a contact in the van der Waals (VdW)

surface with 873L residue (Figure 4A). The mass of residue

valine is lower (99.132 g/mol) than isoleucine (113.159 g/mol),

due to the presence of 1 more carbon in the side chain of

isoleucine than in valine. This difference was reflected in the

residue’s radius, 4.213 Å for 876V and 4.652 Å for 876I. Ac-

cordingly, when valine was replaced by isoleucine in position

876, an overlap in VdW surface with residue 873 could be

predicted (Figure 4B).

DISCUSSION

pfMRP1 was observed to harbor significant biodiversity, with

some of the identified SNPs showing geographical specificity,

with generally less polymorphism observed in Africa, compared

with that in Asia and Oceania (Table 2). Several SNPs are po-

sitioned near predicted functionally important protein regions

(notably NBDs), suggesting the natural existence of coded pf

MRP1 variants with variable transporting capacities. Among

these SNPs, the I876V polymorphism stands out because of its

close proximity to the NBD1/Walker B motif and its apparent

global spread.

In the present study, the I876V polymorphism in pfmrp1 was

found to be under significant selection pressure after AL treat-

ment, leading to the near disappearance of the valine-contain-

ing alleles. The majority of the AL recurrent infections in these

studies represent new inoculations (reinfections) [21, 22]. Rein-

fecting parasites can be selected by subtherapeutic levels of the

long half-life drug partner in ACT [34, 35]; selection of rein-

fections by lumefantrine after AL treatment has been previously

reported [13, 14, 36, 37]. Therefore, we assume that the selec-

tion pressure effect observed here is derived mainly from se-

lection of reinfections by subtherapeutic levels of lumefantrine.

Conversely, no evidence of selection was observed after ASAQ

treatment. This result was further supported by our analysis of

culture-adapted parasites from Colombia that have no genetic

variation in pfmrp1, despite widely variable responses to both

amodiaquine (AQ) and its active metabolite desethylamodia-

quine (DEAQ) [20].

pfMRP1 may influence the in vivo response to drugs via 2

non–mutually exclusive mechanisms: (1) by efflux of the drug,

leading to a significant decrease in cytosol drug concentration

and hence limiting its access to the target, and/or (2) by being

an important contributor in the management of drug-driven

oxidative stress, assuming that pfMRP1 represents a main ox-

idized glutathione (GSSG) efflux pump in P. falciparum [8], as

observed in other biological systems [38].

The observed difference in the selection of genetic variation

in pfmrp1 could be explained by pfMRP1 being more important

in the parasite response to lumefantrine than AQ. This could

be due to either pfMRP1 substrate specificity, the location of

the drug target, or the extent of the drug involvement in ox-

idative stress reactions. The variation itself could also change

pfMRP1 drug specificity; however, this is less probable since

this SNP is located in the NBD, which probably does not di-

rectly interact with the substrate. Many of these factors are

unknown. However, the location of the drug targets could be

different for the 2 drugs. Like chloroquine, another 4-amino-

quinoline, the main AQ/DEAQ therapeutic target is likely to

be located in the food vacuole. The target(s) of lumefantrine is

not yet identified, but the drug could act outside the food vacuole,

as proposed for both lumefantrine [28] and the related arylam-
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inoalcohol, mefloquine [39]. Variation in plasma membrane ef-

fluxers such as pfMRP1 might then be of critical importance to

the effect of lumefantrine, whereas variation in proteins located

in the membrane of the food vacuole, such as pfCRT and Pgh-

1, would better explain different in vitro responses to AQ or

DEAQ [15, 20, 23].

The amino acid residue 876 is localized immediately down-

stream of the Walker B motif in NBD1 (Figure 1), a pivotal

region in ATP binding and hydrolysis. To evaluate a possible

functional influence of this polymorphism for ABC transport-

ers’ NBD functionality, we analyzed the structures of the MsbA

transporter, a bacterial ABC transporter, in its different NBD

conformations. The structures between the LSGGQ motif and

the H loop, comprising the homologous region where the res-

idue pfMRP1 876 localizes (Figure 3), were considered for con-

formational analysis. Our results suggest that this homologous

region in the MsbA transporter is a dynamic zone of crucial

importance for ATP binding. Mobility and flexibility analysis

of the 876I and 876V backbone structure showed no significant

changes in backbone characteristics, thus suggesting that dif-

ferences in backbone conformations might not be the main

reason for functional changes. We then analyzed the I876V side

chains in 2 models, the main difference observed being a change

in the residues 876/873VdW surface contact areas with the 876I

variant overlapping with 873L. VdW forces are weak but are

involved in numerous internal interactions between protein

regions, being of significance for the final protein structure. In

ABC transporters, protein mobility is the basis for protein func-

tionality. This is well documented by Ward et al [40] regarding

the transmembrane regions of the MsbA ABC transport. In the

present work, we used the same approach [40] and focused on

studying the NBD dynamics. We showed that NBD1 structures

move to allow the binding of ATP to the essential acidic residues

at the end of the Walker B motif. We postulate that nonpolar

side chains between these residues play a role in stabilization

of the pair of 2 acidic residues at the end of the Walker B motif,

which is of major importance for Mg2+ binding and consequent

ATP docking to the NBD1. The VdW interaction could be of

different kinds during 1 transport cycle (eg, attraction during

ATP docking and repulsion after or during ATP hydrolysis)

because of protein mobility and changes in the distance between

its side chains. The latter would modulate the conformation

of the acidic residue pair, influencing the binding of the Mg2+

ions.

Because the cytosolic 876 amino acid position is most likely

not located in a region of interaction with substrates, it is

reasonable to ask what the drug-specific influence of this poly-

morphism could be. Our analysis showed that genetic variation

in position 876 might affect the ATP-binding ability of the NBD

of the protein. An altered activity of the ATP hydrolysis cycle

is likely to affect the overall transport capacity of the protein,

with the pharmacodynamic significance of this event being

more visible with drugs specifically transported by pfMRP1.

Assuming that pfMRP1 is not particularly associated with AQ/

DEAQ response, variation in the NBD of this protein will not

be of importance for this drug. On the other hand, variation

in an amino acid of the NBD, such as at 876, could be expected

to alter the rate of lumefantrine transport.

Although the precise molecular contribution of pfMRP1 for

P. falciparum drug response remains unclear, our results in-

dicate that its diversity is under lumefantrine selection pressure

in vivo in a manner similar to the previously described selection

of pfmdr1 and pfcrt SNPs [13, 14, 28, 36]. Therefore, the in-

fluence of the herein-identified SNPs on parasite drug suscep-

tibility merits further investigation. In conclusion, our data

indicate that pfMRP1 may play an important role in future

development of P. falciparum resistance to lumefantrine and,

hence, to AL chemotherapy.
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