103 research outputs found

    Early target attainment of continuous infusion piperacillin/tazobactam and meropenem in critically ill patients : a prospective observational study

    Get PDF
    To evaluate target attainment of empirically dosed continuous infusion piperacillin/tazobactam (TZP) and meropenem (MER) in critically ill patients.Patients were sampled on a daily basis. TZP or MER concentrations were evaluated during the first two days antibiotic therapy. The lower limit of the target range was defined as unbound concentrations equaling 4 times the epidemiological cutoff value of P. aeruginosa. The upper limit of the target range was based on the risk of toxicity, i.e. unbound concentrations >160 mg/L for TZP and > 45 mg/L for MER. Multivariable logistic regression was used to evaluate factors associated with target attainment.Data from 253 patients were analyzed. Overall, 76/205 (37.1%) and 36/48 (75%) of the patients receiving TZP or MER respectively, attained target concentrations. In multivariable analysis, estimated creatinine clearance was identified as a risk factor for target non-attainment (OR 0.988, 95%CI [0.982;0.994]). Patients receiving MER were more likely to attain target concentrations compared with patients receiving TZP (OR 6.02, 95%CI [2.12;18.4]).Target attainment of empiric antibiotic therapy in critically ill patients was low (37%) for TZP and moderate (75%) for MER, despite the use of a loading dose and despite optimization of the mode of infusion

    The mass and density of the dwarf planet (225088) 2007 OR10

    Full text link
    The satellite of (225088) 2007 OR10 was discovered on archival Hubble Space Telescope images and along with new observations with the WFC3 camera in late 2017 we have been able to determine the orbit. The orbit's notable eccentricity, e≈\approx0.3, may be a consequence of an intrinsically eccentric orbit and slow tidal evolution, but may also be caused by the Kozai mechanism. Dynamical considerations also suggest that the moon is small, Deff_{eff} << 100 km. Based on the newly determined system mass of 1.75x1021^{21} kg, 2007 OR10 is the fifth most massive dwarf planet after Eris, Pluto, Haumea and Makemake. The newly determined orbit has also been considered as an additional option in our radiometric analysis, provided that the moon orbits in the equatorial plane of the primary. Assuming a spherical shape for the primary this approach provides a size of 1230±\pm50 km, with a slight dependence on the satellite orbit orientation and primary rotation rate chosen, and a bulk density of 1.75±\pm0.07 g cm−3^{-3} for the primary. A previous size estimate that assumed an equator-on configuration (1535−225+75^{+75}_{-225} km) would provide a density of 0.92−0.14+0.46^{+0.46}_{-0.14} g cm−3^{-3}, unexpectedly low for a 1000 km-sized dwarf planet.Comment: Accepted for publication in Icaru

    Environmental properties of cells improve machine learning-based phenotype recognition accuracy

    Get PDF
    To answer major questions of cell biology, it is often essential to understand the complex phenotypic composition of cellular systems precisely. Modern automated microscopes produce vast amounts of images routinely, making manual analysis nearly impossible. Due to their efficiency, machine learningbased analysis software have become essential tools to perform single-cell-level phenotypic analysis of large imaging datasets. However, an important limitation of such methods is that they do not use the information gained from the cellular micro-and macroenvironment: the algorithmic decision is based solely on the local properties of the cell of interest. Here, we present how various features from the surrounding environment contribute to identifying a cell and how such additional information can improve single-cell-level phenotypic image analysis. The proposed methodology was tested for different sizes of Euclidean and nearest neighbour-based cellular environments both on tissue sections and cell cultures. Our experimental data verify that the surrounding area of a cell largely determines its entity. This effect was found to be especially strong for established tissues, while it was somewhat weaker in the case of cell cultures. Our analysis shows that combining local cellular features with the properties of the cell's neighbourhood significantly improves the accuracy of machine learning-based phenotyping.Peer reviewe

    Multi-modal magnetic resonance imaging in the acute and sub-acute phase of mild traumatic brain injury: can we see the difference?

    Get PDF
    Advanced magnetic resonance imaging (MRI) methods were shown to be able to detect the subtle structural consequences of mild traumatic brain injury (mTBI). The objective of this study was to investigate the acute structural alterations and recovery after mTBI, using diffusion tensor imaging (DTI) to reveal axonal pathology, volumetric analysis, and susceptibility weighted imaging (SWI) to detect microhemorrhage. Fourteen patients with mTBI who had computed tomography with negative results underwent MRI within 3 days and 1 month after injury. High resolution T1-weighted imaging, DTI, and SWI, were performed at both time points. A control group of 14 matched volunteers were also examined following the same imaging protocol and time interval. Tract-Based Spatial Statistics (TBSS) were performed on DTI data to reveal group differences. T1-weighted images were fed into Freesurfer volumetric analysis. TBSS showed fractional anisotropy (FA) to be significantly (corrected p<0.05) lower, and mean diffusivity (MD) to be higher in the mTBI group in several white matter tracts (FA=40,737; MD=39,078 voxels) compared with controls at 72 hours after injury and still 1month later for FA. Longitudinal analysis revealed significant change (i.e., normalization) of FA and MD over 1 month dominantly in the left hemisphere (FA=3408; MD=7450 voxels). A significant (p<0.05) decrease in cortical volumes (mean 1%) and increase in ventricular volumes (mean 3.4%) appeared at 1 month after injury in the mTBI group. SWI did not reveal microhemorrhage in our patients. Our findings present dynamic micro- and macrostructural changes occurring in the acute to sub-acute phase in mTBI, in very mildly injured patients lacking microhemorrhage detectable by SWI. These results underscore the importance of strictly defined image acquisition time points when performing MRI studies on patients with mTBI

    Investigation of the Antihypertrophic and Antifibrotic Effects of Losartan in a Rat Model of Radiation-Induced Heart Disease

    Get PDF
    Radiation-induced heart disease (RIHD) is a potential late side-effect of thoracic radiotherapy resulting in left ventricular hypertrophy (LVH) and fibrosis due to a complex pathomechanism leading to heart failure. Angiotensin-II receptor blockers (ARBs), including losartan, are frequently used to control heart failure of various etiologies. Preclinical evidence is lacking on the anti-remodeling effects of ARBs in RIHD, while the results of clinical studies are controversial. We aimed at investigating the effects of losartan in a rat model of RIHD. Male Sprague-Dawley rats were studied in three groups: (1) control, (2) radiotherapy (RT) only, (3) RT treated with losartan (per os 10 mg/kg/day), and were followed for 1, 3, or 15 weeks. At 15 weeks post-irradiation, losartan alleviated the echocardiographic and histological signs of LVH and fibrosis and reduced the overexpression of chymase, connective tissue growth factor, and transforming growth factor-beta in the myocardium measured by qPCR; likewise, the level of the SMAD2/3 protein determined by Western blot decreased. In both RT groups, the pro-survival phospho-AKT/AKT and the phospho-ERK1,2/ERK1,2 ratios were increased at week 15. The antiremodeling effects of losartan seem to be associated with the repression of chymase and several elements of the TGF-beta/SMAD signaling pathway in our RIHD model.Peer reviewe

    Comparison of the antiremodeling effects of losartan and mirabegron in a rat model of uremic cardiomyopathy

    Get PDF
    Uremic cardiomyopathy is characterized by diastolic dysfunction (DD), left ventricular hypertrophy (LVH), and fibrosis. Angiotensin-II plays a major role in the development of uremic cardiomyopathy via nitro-oxidative and inflammatory mechanisms. In heart failure, the beta-3 adrenergic receptor (beta 3-AR) is up-regulated and coupled to endothelial nitric oxide synthase (eNOS)-mediated pathways, exerting antiremodeling effects. We aimed to compare the antiremodeling effects of the angiotensin-II receptor blocker losartan and the beta 3-AR agonist mirabegron in uremic cardiomyopathy. Chronic kidney disease (CKD) was induced by 5/6th nephrectomy in male Wistar rats. Five weeks later, rats were randomized into four groups: (1) sham-operated, (2) CKD, (3) losartan-treated (10 mg/kg/day) CKD, and (4) mirabegron-treated (10 mg/kg/day) CKD groups. At week 13, echocardiographic, histologic, laboratory, qRT-PCR, and Western blot measurements proved the development of uremic cardiomyopathy with DD, LVH, fibrosis, inflammation, and reduced eNOS levels, which were significantly ameliorated by losartan. However, mirabegron showed a tendency to decrease DD and fibrosis; but eNOS expression remained reduced. In uremic cardiomyopathy, beta 3-AR, sarcoplasmic reticulum ATPase (SERCA), and phospholamban levels did not change irrespective of treatments. Mirabegron reduced the angiotensin-II receptor 1 expression in uremic cardiomyopathy that might explain its mild antiremodeling effects despite the unchanged expression of the beta 3-AR.Peer reviewe

    A versatile transposon-based technology to generate loss- and gain-of-function phenotypes in the mouse liver

    Get PDF
    Background Understanding the contribution of gene function in distinct organ systems to the pathogenesis of human diseases in biomedical research requires modifying gene expression through the generation of gain- and loss-of-function phenotypes in model organisms, for instance, the mouse. However, methods to modify both germline and somatic genomes have important limitations that prevent easy, strong, and stable expression of transgenes. For instance, while the liver is remarkably easy to target, nucleic acids introduced to modify the genome of hepatocytes are rapidly lost, or the transgene expression they mediate becomes inhibited due to the action of effector pathways for the elimination of exogenous DNA. Novel methods are required to overcome these challenges, and here we develop a somatic gene delivery technology enabling long-lasting high-level transgene expression in the entire hepatocyte population of mice. Results We exploit the fumarylacetoacetate hydrolase (Fah) gene correction-induced regeneration in Fah-deficient livers, to demonstrate that such approach stabilizes luciferase expression more than 5000-fold above the level detected in WT animals, following plasmid DNA introduction complemented by transposon-mediated chromosomal gene transfer. Building on this advancement, we created a versatile technology platform for performing gene function analysis in vivo in the mouse liver. Our technology allows the tag-free expression of proteins of interest and silencing of any arbitrary gene in the mouse genome. This was achieved by applying the HADHA/B endogenous bidirectional promoter capable of driving well-balanced bidirectional expression and by optimizing in vivo intronic artificial microRNA-based gene silencing. We demonstrated the particular usefulness of the technology in cancer research by creating a p53-silenced and hRas G12V-overexpressing tumor model. Conclusions We developed a versatile technology platform for in vivo somatic genome editing in the mouse liver, which meets multiple requirements for long-lasting high-level transgene expression. We believe that this technology will contribute to the development of a more accurate new generation of tools for gene function analysis in mice.Peer reviewe

    Helix compactness and stability: Electron structure calculations of conformer dependent thermodynamic functions

    Get PDF
    Structure, stability, cooperativity and molecular packing of two major backbone forms: 310-helix and β-strand are investigated. Long models HCO-(Xxx)n-NH2 Xxx = Gly and (l-)Ala, n ⩽ 34, are studied at two levels of theory including the effect of dispersion forces. Structure and folding preferences are established, the length modulated cooperativity and side-chain determined fold compactness is quantified. By monitoring ΔG°β→α rather than the electronic energy, ΔEβ→α, it appears that Ala is a much better helix forming residue than Gly. The achiral Gly forms a more compact 310-helix than any chiral amino acid residue probed here for l-Ala
    • …
    corecore