
Original Articles
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in the Acute and Sub-Acute Phase of Mild Traumatic

Brain Injury: Can We See the Difference?
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Abstract

Advanced magnetic resonance imaging (MRI) methods were shown to be able to detect the subtle structural consequences

of mild traumatic brain injury (mTBI). The objective of this study was to investigate the acute structural alterations

and recovery after mTBI, using diffusion tensor imaging (DTI) to reveal axonal pathology, volumetric analysis, and

susceptibility weighted imaging (SWI) to detect microhemorrhage. Fourteen patients with mTBI who had computed

tomography with negative results underwent MRI within 3 days and 1 month after injury. High resolution T1-weighted

imaging, DTI, and SWI, were performed at both time points. A control group of 14 matched volunteers were also

examined following the same imaging protocol and time interval. Tract-Based Spatial Statistics (TBSS) were performed

on DTI data to reveal group differences. T1-weighted images were fed into Freesurfer volumetric analysis. TBSS showed

fractional anisotropy (FA) to be significantly (corrected p < 0.05) lower, and mean diffusivity (MD) to be higher in the

mTBI group in several white matter tracts (FA = 40,737; MD = 39,078 voxels) compared with controls at 72 hours after

injury and still 1month later for FA. Longitudinal analysis revealed significant change (i.e., normalization) of FA and MD

over 1 month dominantly in the left hemisphere (FA = 3408; MD = 7450 voxels). A significant ( p < 0.05) decrease in

cortical volumes (mean 1%) and increase in ventricular volumes (mean 3.4%) appeared at 1 month after injury in the

mTBI group. SWI did not reveal microhemorrhage in our patients. Our findings present dynamic micro- and macro-

structural changes occurring in the acute to sub-acute phase in mTBI, in very mildly injured patients lacking micro-

hemorrhage detectable by SWI. These results underscore the importance of strictly defined image acquisition time points

when performing MRI studies on patients with mTBI.
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Introduction

Traumatic brain injury (TBI) is a serious and common public

health problem worldwide.1,2 Among the typically affected,

young and middle-aged adults, the incidence of TBI is higher than

severe brain disorders such as epilepsy, stroke, and tumors. The

majority of the cases (80%) of TBI are classified as ‘‘mild’’

(mTBI), referring to a less disadvantageous clinical state—i.e.,

Glasgow Coma Scale (GCS) 13–15, loss of consciousness

< 30 min.3,4 Nearly every third of these patients, however, experi-

ence residual cognitive, behavioral, or physical deficit, termed post-

concussion syndrome. This complication may persist even lifelong,

leading to disability in everyday social interactions and work.5

The exact mechanisms after mTBI remain unclear. In most of the

cases, results of clinical scans such as computed tomography (CT)

and routine magnetic resonance imaging (MRI) are negative,

suggesting a microscopic nature of damage, below the sensitivity of

routine imaging.6 At the same time, advanced MRI methods, such

as diffusion tensor imaging (DTI), susceptibility weighted imaging

(SWI), and volumetric analysis of high-resolution MRI seem to be a

potential non-invasive tool in revealing subsequent organic chan-

ges caused by TBI.7–9
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The character of diffusivity in the brain is widely accepted to be

associated with fiber tracts—i.e., axons and myelin sheath.10 DTI

indices as fractional anisotropy (FA) and mean diffusivity (MD)

were shown to be sensitive markers of microstructural alteration in

white matter, thus are possible to detect diffuse axonal injury, an

effect of shear-strain deformation of the traumatic brain, regarded

to be responsible for symptoms in mTBI.11,12 Further, the sensi-

tivity to changes of water microcompartments also enables DTI to

assess different subtypes of edema.13

The idea of using DTI as a sensitive and objective method in

mTBI attracted a wide range of studies. The findings, however,

are somewhat contrary. A large set of studies detected reduced FA

and elevated MD in white matter regions of patients with mild

trauma at various intervals after injury compared with healthy

controls.11,12,14 Instead, others found increased FA and decreased

MD over white matter tracts predominantly in a short period (days)

after mTBI.15,16 Some longitudinal studies revealed partial nor-

malization of DTI indices after 3–6 months,11,16–18 while other

investigations indicated traumatic microstructural alteration to

be permanent.18,19 Some studies in fields of TBI related injury

severity and clinical outcome—i.e., cognitive or psychological

complications—to DTI indices, or tractography findings.20–22

Non-specific brain tissue loss caused by traumatic injury has

been shown on a large TBI population of mixed severity.23 Earlier

studies using manual-visual morphometric techniques presented

atrophy of numerous neuroanatomical structures (e.g., hippocam-

pus, fornix, corpus callosum) and liquor space-dilation in patients

with trauma.24–26

The association of injury severity, outcome, and morphometric

data has also been revealed.27,28 Apart from investigation of dis-

tinct well-circumscribed structures, a voxel-based morphometric

approach made it possible to perform automatic whole-brain (e.g.,

cortical volumetric) analysis, which has also pointed to the oc-

currence of such a post-traumatic degenerative process and was

even able to present regional atrophy.29,30

While the majority of these studies concentrated on late-phase

post-traumatic consequences, there is a lack of data concerning

acute or semi-acute dynamics of tissue atrophy. Also, only little

information has been provided on the significance of mild injuries

in the generation of brain volume loss.8,31

SWI is the most sensitive tool in detecting microhemorrhage that

may occur in diffuse axonal injury.32 The amount and localization

of microhemorrhage appearing as low-signal foci after TBI have

prognostic value, as has been described in a series of studies.33 On

the other hand, to date the usefulness of SWI in mTBI is not clear.

Overall, these methods are promising in detecting underlying

mechanisms and may provide an objective aspect when assessing

the outcome of mTBI. Findings of DTI, however, are inconsistent,

and little is known regarding the time course of diffusivity changes

after mTBI; volumetric analysis and SWI was rarely applied to

mTBI patients.

The objective of this study was to investigate acute structural

alterations and recovery after mTBI, using DTI, volumetric anal-

ysis, and SWI.

Two acquisition time points were assigned to involve acute phase

and first month after injury: initial acquisition within the first 3 days

after injury, and a second acquisition 1 month later involving the same

subjects. A control group of age- and sex-matched healthy volunteers

underwent the same imaging process with a similar time frame.

Semi-automated methods investigating whole brain, without the

need of pre-specifying regions of interest, were used, keeping

clinical adaptability in mind.

Beyond cross-sectional analyses, the comparison of the two time

points within the mTBI and control group was also performed to

maximize statistical power and thus make it able to better detect

potentially subtle alterations.

Methods

Subjects

Fourteen patients (five women) from the outpatient unit of the
department of neurosurgery with a history of mTBI participated in
this study. Patients fulfilled the criteria of ‘‘uncomplicated’’
mTBI.34 Patients had a GCS of 15, loss of consciousness for less
than 1 min, posttraumatic amnesia for less than 30 min—based on
the Galveston Orientation and Amnesia Test35—and a normal
posttraumatic CT read by a board-certified neuroradiologist (H.K.).
Exclusion criteria consisted of history of neurological or psychi-
atric disease, alcohol abuse, substance dependence, earlier TBI and
MRI incompatibility. All patients were right-handed, according to
the Edinburg Handedness Inventory.36 A control group of 14 age-
and sex-matched healthy volunteers following the same exclusion
criteria were also involved in the study. All subjects gave written
informed consent under a protocol approved by the local ethics
committee. Demographic characteristics of patient and control
groups are shown in Table 1.

Image acquisition

Initial MRI data of patients were acquired within 72 hours after
injury (mean *2 days, ranging from 12 h to 72 h, referred to as
72 h). The second acquisition was performed approximately 1
month later (mean 35 days ranging from 28 days to 43 days after
injury, referred to as 1 month). The control group also underwent
the two time point acquisition with a similar time frame (average 30
days difference ranging from 27 to 36).

MRI was performed on a Magnetom� TIM Trio� 3 Tesla
scanner (Siemens, Enlargen, Germany) with a 12 channel standard
head coil. The sequences consisted of high-resolution T1-weighted
scan (MP-RAGE) for volumetric analysis, T2-weighted scan, DTI,
and SWI, which were applied on all subjects and controls. After the
localizer scanning for proper orientation, shimming was carried out
to maximize field homogeneity.

T1-weighted high-resolution images were obtained using a
three-dimensional (3D) MP-RAGE sequence (TR/TI/TE = 1900/
900/3.41ms; flip angle = 9 degrees; 160 axial slices; slice thick-
ness = 0.94 mm; no interslice gap; field of view [FOV] = 210 ·
240 mm2; matrix size = 224 · 256; receiver bandwidth = 180 Hz/
pixel).

T2-weighted images were acquired using a turbo spin echo se-
quence (TR/TE = 6000/93ms; flip angle = 120 degrees; 30 sagittal
slices; slice thickness = 4 mm; no interslice gap; FOV = 193 · 220
mm2; matrix size = 280 · 320; receiver bandwidth = 220 Hz/pixel.

Table 1. Demographic Characteristics

of Patient and Control Groups
a

Data Patients (n = 14) Controls (n = 14) p

Age (y)
Men 34.3 – 19.4 (20–72) 35 – 19.6 (20–71) 0.94
Women 36 – 18.6 (21–61) 37.2 – 18.6 (21–58) 0.92
Total 34.9 – 18.4 (20–72) 35.8 – 18.5 (20–71) 0.90

No. of women 5 5 1
Education (y) 13.4 – 2.2 13.8 – 2.5 0.69
Right handedness 14 14 1

aData are mean – standard deviation; numbers in parentheses are the
ranges
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DTI was performed using a two dimensional single-shot
diffusion-weighted, spin-echo, echo-planar imaging (EPI) sequence.
DTI was achieved using 20 optimum non-collinear encoding direc-
tions with a diffusion weighting of b = 700 s/mm2, and a single
volume was collected with no diffusion gradients applied (TR/
TE = 8500/90ms; 60 axial slices, slice thickness = 2 mm; FOV =
208 · 256 mm2; matrix size = 208 · 256; receiver bandwidth =
1563 Hz/pixel; 4 averages. The total acquisition time was 12 min).

Advanced shimming was performed before the DTI acquisition
to optimize the homogeneity of the magnetic field across the brain
and to minimize EPI distortions.

The 3D gradient echo SWI sequence was run with the following
parameters: (TR/TE = 27/20 ms; 72 axial slices; slice thick-
ness = 1.5 mm; flip angle = 15; matrix size = 182 · 256; FOV = 173
· 230 mm2; receiver bandwidth = 120 Hz/pixel).

Subjects were positioned supine in the scanner. Foam cushion-
ing was used to immobilize the head within the coil to minimize
motion degradation.

Data processing

Diffusion tensor imaging and Tract-Based Spatial Statis-
tics (TBSS). Initial diffusion image processing was performed to
generate TBSS input data using the FDT (FMRIB’s Diffusion
Toolbox) tool.37 The steps included eddy current correction and
motion correction using a 12-parameter affine registration to a
reference volume (i.e., non-diffusion weighted data, b = 0 s/mm2),
averaging of the four sets of 20 diffusion directions, and automated
brain extraction with brain extraction tool,38 which was manually
supervised to avoid incorrect brain extraction. Diffusion data were
then fed into DTIFit37 to calculate the diffusion tensor model for
each brain voxel and subsequently compute FA and MD values
from the tensor’s three eigenvalues.39

Voxelwise statistical analysis of the FA data was performed
using TBSS,40 part of FMRIB’s Software Library (FSL).37 TBSS
projects all subjects’ FA data onto a mean FA tract skeleton in
standard space, before applying voxelwise cross-timepoint or
cross-group statistics. We run TBSS to other diffusion-derived
data; MD as well. The voxelwise statistics were performed on
skeletonized data using the permutation-based non-parametric
randomize analysis, involved in FSL.41 The two time point FA and
MD data from both mTBI and control groups were compared by
non-parametric paired t test to maximize statistical power. We
compared the mTBI with the control group by non-parametric
unpaired t test, in both first and second time points. Results were
considered significant for p < 0.05, corrected for multiple compar-
isons using ‘‘threshold-free cluster enhancement,’’ which avoids
making an arbitrary choice of the cluster-forming threshold, while
preserving the sensitivity benefits of clusterwise correction.

Volumetric analysis. T1-weighted high-resolution images
were fed into volumetric segmentation that was performed with the
FreeSurfer image analysis suite (Athinoula A. Martinos Center for
Biomedical Imaging, Charlestown, MA 2005). Details of the pro-
cedures are described in previous publications.42–48 Briefly, this
processing includes the removal of non-brain tissue using a hybrid
watershed/surface deformation procedure,48 automated Talairach
transformation, segmentation of the subcortical white matter and
deep gray matter volumetric structures,44,49 intensity normaliza-
tion50 tessellation of the gray matter-white matter boundary, au-
tomated topology correction,51,52 and surface deformation
following intensity gradients to optimally place the gray/white and
gray/cerebrospinal fluid (CSF) borders at the location where the
greatest shift in intensity defines the transition to the other tissue
class.42,43,53

We checked each dataset within the processing stream. We
checked the Talairach transform, the accuracy of the skull strip,
the accuracy of the white matter, and pial surface segmentation.

Corrections were performed when necessary. The output volumes
of cortex, white matter, corpus callosum, ventricles, extracerebral
CSF, hippocampus, amygdala, pallidum, nucleus caudatus, thala-
mus nucleus proprius, and nucleus accumbens were statistically
compared between first and second time point by simple paired
t test, both in traumatic and control groups. Analysis between
patients and control group was performed using unpaired t test on
volumes normalized to intracranial volume.

Longitudinal brain volume change calculation and illustration
were performed on MP-RAGE images using FSL37 SIENA.38

First, percentage brain volume changes between two time points
were estimated. Next, for each subject, the edge displacement
image (encoding, at brain/non-brain edge points, the outward or
inward edge change between the two time points) was dilated,
transformed into MNI152 space, and masked by a standard
MNI152-space brain edge image. In this way, the edge displace-
ment values were warped onto the standard brain edge.54 Next, the
resulting images from all subjects were fed into voxelwise sta-
tistical analysis using the randomize tool41 to test brain volume
change in the traumatic and control group between the 72 h and 1
month measurements.

SWI. Susceptibility weighted images were searched for
hemorrhagic lesions by a board-certified neuroradiologist.

Results

Structural images

T1- and T2-weighted structural images were read by a board-

certified neuroradiologist (H.K.) and found to be free of trauma-

related pathology. No low-signal foci referring to microhemorrhages

were apparent on susceptibility weighted images in the traumatic or

in the control group.

TBSS

Longitudinal analysis. TBSS analysis between 72 h and 1

month acquisition of traumatic injury patients showed significant

difference (corrected p < 0.05) in voxels of anterior corpus callo-

sum, right corona radiata, and internal capsule for both FA and MD

values. FA was lower, while MD was higher at 72 h than after 1

month (see Fig. 1 and Table 2 for details). No voxels appeared to be

significant on the opposite contrasts (72 h > 1 month for FA, 1

month > 72 h for MD). The two time point comparison of control

subjects revealed no statistical difference regarding MD or FA.

Cross-sectional analysis: imaging within 72 h after
injury. Comparison between the mTBI group’s 72 h imaging and

the control group’s first time point imaging showed FA to be sig-

nificantly decreased (corrected p < 0.05) and MD to be significantly

increased (corrected p < 0.05) in the traumatic injury group dif-

fusely in several white matter tracts of both hemisphere (see Fig. 2

and Table 2 for details). The contrast of control group MD minus

mTBI group MD, or mTBI group FA minus control group FA

yielded no significant voxels.

Cross-sectional analysis: imaging at 1 month. The com-

parison of mTBI group data at 1 month with control group data at

the second time point also highlighted significantly (corrected

p < 0.05) reduced FA in the mTBI group, but only in the right

hemispherium, to a much smaller extent (see Fig. 3 and Table 2 for

details). The opposite contrast did not reveal any significant results.

MD values showed changes in the opposite direction as FA values,

but without reaching statistical significance.
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Overall relations of FA and MD values found across sessions and

groups are illustrated in Figure 4.

Volumetric analysis

FreeSurfer volumetric segmentation. Significant differ-

ences ( p < 0.05) were detected between the 72 h and 1 month

volumes of the cortex, ventricles, and extracerebral CSF in the

mTBI group. Cortical grey matter volume at 72 h was larger than at

1 month. Ventricular (more pronouncedly lateral ventricle) and

extracerebral CSF volume was lower at 72 h. No significant volume

change over time was found in other investigated structures such as

white matter, hippocampus, amygdala, pallidum, nucleus caudatus,

nucleus accumbens, thalamus nucleus proprius. The average loss of

cortical volume over 1 month was 1.02%. Gain of average ven-

tricular volume over time was 3.4%. Volume changes in the control

group were not significant. Table 3 shows details of longitudinal

brain structure volume comparison in the mTBI and control groups.

Cross-sectional comparison of any normalized (to intracranial

volume) brain structure volumes revealed no significant difference

between control and traumatic group either at 72 h or 1 month

(Table 4).

FSL SIENA. Analysis of edge displacement data (edge flow)

showed significant outward edge movement in several voxels lining

the 3th and lateral ventricles from the 72 h to 1 month imaging in

the traumatic group, as it is presented on Fig. 5. Opposite edge

displacement (inward) or edge displacements in control group were

not significant.

Discussion

This study investigated the changes of structural alterations

detectable by DTI, volumetric analysis, and SWI in a longitudinal

set after mTBI. We found marked differences in microstructure and

brain volumes between the acute and sub-acute state by DTI and

volumetric analysis. We suppose that these changes over time

provide an insight to structural alteration and regeneration after

mTBI.

FIG. 1. Results of the Tract-Based Spatial Statistics (TBSS) analysis of the 72 h and 1 month data of the mild traumatic brain injury
group. The red-yellow voxels represent significantly (corrected p < 0.05) decreased fractional anisotropy (FA) and increased mean
diffusivity (MD) values in the 72 h data compared with the 1 month data. Significant voxels are thickened into local tracts and
overlaid on the group mean white matter skeleton (green) and the group mean fractional anisotropy (FA) image (grayscale). Images
are shown in radiological convention (right = subject’s left). Slice coordinates (MNI 152 aligned anatomical): x = 0 mm, y = 10 mm,
z = 22 mm.

Table 2. Details of Significant (Corrected P < 0.05)

Voxels Yielded by Tract Based Spatial Statistics

Averagea

Contrast Voxel no. 72 h 1 month pb

FA

mTBI 72 h < mTBI 1 month 3408 0.5653 0.5883 0.041

mTBI Control
mTBI 72 h < control 40737 0.548 0.4994 0.01
mTBI 1 month < control 1932 0.612 0.5541 0.045

MDc

mTBI 72 h > mTBI 1 month 7450 8.12 7.7 0.032

mTBI Control
mTBI 72 h > control 39078 7.36 7.9 0.005
mTBI 1 month > ontrol 0 - - 0.084

aAverage values of subjects’ white matter ‘‘skeleton’’ voxels that were
yielded significantly different in given contrast.

bp value for voxel with highest statistical difference.
c10 - 4 mm2/sec.
FA, fractional anisotropy; mTBI, mild traumatic brain injury; MD, mean

diffusivity.
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FIG. 2. Results of the Tract-Based Spatial Statistics analysis of the control and mild traumatic brain injury (mTBI) group at 72 h. The
red-yellow voxels represent significantly (corrected p < 0.05) decreased fractional anisotropy (FA) and increased mean diffusivity (MD)
in the mTBI group compared with the control group. Significant voxels are thickened into local tracts and overlaid on the group mean
white matter skeleton (green), and the group mean fractional anisotropy (FA) image (grayscale). Images are shown in radiological
convention (right = subject’s left). Slice coordinates (MNI 152 aligned anatomical): x = 0 mm, y = -10 mm, z = 7 mm.

FIG. 3. Results of the Tract-Based Spatial Statistics analysis of the control group and mild traumatic brain injury group at 1 month.
The red-yellow voxels represent significantly (corrected p < 0.05) decreased fractional anisotropy (FA) in the mTBI group compared
with the control group. Significant voxels are thickened into local tracts and overlaid on the group mean white matter skeleton (green),
and the group mean fractional anisotropy (FA) image (grayscale). Images are shown in radiological convention (right = subject’s left).
Slice coordinates (MNI 152 aligned anatomical): x = 0 mm, y = -17 mm, z = 19 mm. MD, mean diffusivity.
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Diffusion tensor imaging

We found DTI parameters FA and MD to substantially differ

between the acute phase mTBI patients and control subjects in

nearly all white matter tracts. mTBI patients showed decreased FA

values and, oppositely, increased MD values compared with heal-

thy subjects. After 1 month, this difference with controls remained

significant only in a distinctly smaller extent of voxels—limited to

the right hemisphere regarding FA, and became insignificant re-

garding MD. The DTI values appeared to normalize after 1 month

of injury (i.e., significant increase of FA and significant decrease of

MD). The DTI parameters remained reliably constant in the control

group across the two acquisitions.

Overall, these findings suggest that the DTI-detectable abnor-

mality developing in the acute phase is resolving dynamically in the

first month after mild injury.

The exact mechanisms behind the detected changes of DTI in-

dices remain elusive, however. DTI parameters of the brain after

TBI are related to a complex setup of dependent and independent

factors. Axonal and myelin sheath pathology, ratio of extracellular

and intracellular water compartments linked to edema or cell death

have together an effect on the diffusion tensor. Many studies ex-

plain reduced FA or elevated MD in mTBI patients with reduced

integrity; i.e., misalignment of axonal and myelin structures as a

consequence of shear-strain forces, including local expansion of

axonal cylinder, or axonal disconnection.11,12,20 On the other hand,

some more recent studies observed elevated FA or reduced MD

short after mild injury along several white matter regions.15,16,55

One possible underlying mechanism is cytotoxic edema, because in

this condition, the injury-induced altered function of gated ion

channels results in intracellular swelling and decrease in extracel-

lular water that causes reduced radial diffusivity.13,56,57 The output

yielded by DTI may be a summarized effect of the two basic

mechanisms: microstructural disintegration and cytotoxic edema.

The actual dominance of these substantial mechanisms in the

white matter may theoretically depend on temporal, spatial factors,

attributes of the patient, and the circumstances of injury.58

Although a recent study presenting bidirectional changes in FA

of mTBI patients raised the possibility of spatial factors contrib-

uting to alterations in FA,59 our data support rather the significance

of temporal factors: both FA and MD changed significantly in a

relatively short period, and no bidirectional changes were detected.

The rapid consolidation of MD hypothetically may be associated

with the recovery process from edema, because edema is thought to

pass over in a similar pace after mTBI.60,61 The insignificant dif-

ference in MD values yielded by TBSS between 1 month mTBI

patients and controls, however, does not necessarily mean normal

MD values for the patients at 1 month; further, FA remained sig-

nificantly reduced at different white matter regions also after 1

month. This is somewhat surprising considering that FA is thought

to be more variable among subjects and thus potentially less sen-

sitive in analyses.62 This type of slower consolidation of FA values,

however, may mirror a process of cellular realignment and a

cleanup of degenerative residuals by phagocytes.

Volumetric analysis

This study demonstrates significant reduction of gray matter

volume accompanied by significant CSF volume gain over 1 month

after mTBI. Overall, these changes indicate reduction of brain

tissue volume, which may be a consequence of both the recovery

from initial subtle edema and the initiation of atrophy. To elucidate

the contribution of these two factors, cross-sectional analysis was

performed, which, however, yielded no significant differences be-

tween the control and the TBI group at any time points.

This is probably the kickback of the high intersubject variability

of brain structure volumes and that of the low number of subjects,

also observed as an obstacle of a previous volumetric study.8 Pre-

viously, however, Warner and coworkers30 found lateral ventricle

volumes to be e significantly smaller in patients with acute TBI than

in control subjects. This supports the theory that acute edema for-

mation (i.e., brain swelling) may take place in patients with TBI.

FIG. 4. Relations of fractional anisotropy (FA) and mean dif-
fusivity (MD) values found across sessions and groups. mTBI,
mild traumatic brain injury.

Table 3. Longitudinal Comparison of Brain Structure Volumes (lL) in mTBI and Control Groups

mTBI Control

72 h 1 month Initial 1 month
Structure Mean (SD) Mean (SD) pa Mean (SD) Mean (SD) pa

Cortical GM 474917 (69264) 470068 (65550) 0.029 479175 (52835) 478777 (51015) 0.44
Ventricles 20198 (16545) 20882 (16830) 0.023 20860 (16443) 20920 (16151) 0.38
Lateral ventricles 16857 (14736) 17558 (15075) 0.007 17160 (14800) 17212 (14717) 0.34
E.C. CSF 1402 (572) 1466 (597) 0.013 1436 (315) 1444 (300) 0.3

aPaired t test.
mTBI, mild traumatic brain injury; SD, standard deviation; GM, grey matter;
E.C. CSF, extra cerebral cerebrospinal fluid.
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Both the amount of brain swelling and the subsequent atrophy

correlates with clinical severity and outcome as described in

previous studies.8,27,61,63,64 Hence, the rate of brain volume

change at the acute to sub-acute stage is likely to have prognostic

value, because it represents the effect of impact and the fol-

lowing degeneration. Further, based on the inter-session sensi-

tivity of Freesurfer volumetric segmentation presented here,

MRI volumetric analysis may be virtually applied as a non-

invasive tool in measuring brain edema retrospectively at an

optimal interval after injury. Our data showed lateral ventricles

to be the most potential structures for detecting volume change

after injury.

Susceptibility weighted imaging

Although compared with other imaging methods, SWI is ex-

tremely sensitive to microhemorrhages and reveals a high number

of them in severe to moderate TBI,65 microhemorrhages do not

seem to be frequent in mTBI.66 Thus, the absence of micro-

hemorrhages detectable with SWI is not surprising in the very

mildly injured group presented here. SWI may be implemented to

subclassify mTBI, declaring microhemorrhage positive or negative

cases. This distinction may be helpful—e.g., when interpreting DTI

results in mTBI—as in this study, SWI data ensured that DTI data

was not modified by hemorrhagic lesions.

The main limitation of the present study was the relatively low

number of subjects. This was most disadvantageous during the

volumetric cross-sectional analysis that revealed no significant

differences, because of great variance in volumes of cerebral

structures. The need of a far greater population to perform reliable

cross-sectional volumetric analysis was established in previous

studies.67 Thus, the exact direction of volume changes detected in

the TBI group remained undetermined.

A weakness of DTI, resulting from its technical nature, is the

unpredictable effect of complex fiber architecture such as fiber

crossing or merging.68 The potentially higher vulnerability of these

complex fiber sites increases the importance of this problem when

performing DTI studies of TBI.

To our knowledge, no previous study showed such prominent

changes in FA, MD, and brain tissue volume during the first month

after mTBI. Further investigation is needed to better understand the

correlations of FA and MD to underlying pathology and to reveal

the correlates of acute brain volume alterations and clinical aspects.

Volumetric analysis may be a useful clinical tool in the assessment

of edema or early degenerative processes in mTBI when performed

in short-term follow-up design.

We suggest that combined application of DTI, SWI and volu-

metric segmentation provides essential information on the structural

sequelae of mTBI and helps the differentiation of underlying

mechanisms. DTI itself, which proved to be highly sensitive to mi-

crostructural alteration, at the same time appears to be less specific

concerning the complexity of traumatically induced alterations.

Volumetric analysis and SWI may extend the field of view of

DTI by providing separate insights to edematous, degenerative

processes and microhemorrhages after trauma.

The automated, whole-brain approach available in DTI and

volumetric analyses offer the possibility to perform these methods

in routine conditions as well.

The dynamism of microstructural alterations presented in this

report highlights the need of strictly standardized image acquisition

time points when performing DTI or volumetric analysis after

mTBI.

Table 4. Comparison of Brain Structure Volumes Between mTBI and Control Subjects

mTBI 72 h mTBI 1 month Control

Structure Mean (SD) pa Mean (SD) pa Mean (SD)

Cortical GM/ICV 0.3601 (0.0424) 0.41 0.3569 (0.0409) 0.49 0.3568 (0.0352)
Ventricles/ICV 0.0148 (0.0111) 0.47 0.0153 (0.0114) 0.43 0.0145 (0.0104)
Lateral ventricles/ICV 0.0123 (0.0099) 0.45 0.0129 (0.0102) 0.40 0.01189 (0.0097)
E.C. CSF/ICV 0.00105 (0.00039) 0.47 0.00110 (0.00041) 0.32 0.00104 (0.00019)

aUnpaired t test.
mTBI, mildtraumatic brain injury; SD, standard deviation; GM, grey matter; ICV, intracranial volume; E.C. CSF, extracerebral cerebrospinal fluid.

FIG. 5. Results of voxel based multi-subject SIENA analyis in the mild traumatic brain injury group. Blue voxels indicate significant
( p < 0.05) outward edge displacement over time in the traumatic injury group. Slice coordinates in MNI 152 space: x = -14 y = -18 z = 20.
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