15 research outputs found
Manifesto à cidade de Ponta Delgada dos arquitetos e estudantes de arquitetura micaelense
Os micaelenses sabem-no já: o importante conjunto da nova praça lado-sul da matriz,
está projectado e vai erguer-se em moldes pombalinos!... A incongruência e o absurdo
de uma tal proposição sente-o todo e qualquer leigo; basta para tanto boa fé e um pouco
de bom senso
EVOLUÇÃO DO PERFIL CLÍNICO E EPIDEMIOLÓGICO DA TUBERCULOSE NO NORTE E NORDESTE BRASILEIRO: 2018- 2023
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis. It is transmitted through the inhalation of aerosols and leads to a granulomatous infection in the lower respiratory tract. Patients with TB present with a clinical picture characterized by: fever, weakness, anorexia, weight loss and symptoms specific to the affected area. In view of this, TB can be classified into two forms: pulmonary and extrapulmonary. This is an ecological, descriptive, retrospective and quantitative study based on secondary data obtained from the Informatics Department of the Unified Health System (DATASUS). The study evaluated confirmed cases of Tuberculosis in the population of the North and Northeast of the country, between 2018 and 2023. The total number of confirmed cases of Tuberculosis in the North and Northeast of Brazil, between 2018 and 2023, was 222,594 cases, the population affected by tuberculosis, in the North and Northeast of Brazil, between 2018 and 2023, are men, between 20 and 39 years old, brown, residents of the Northeast region of the country, presenting the form of pulmonary tuberculosis and evolving to cure. There is a need for further studies on the prevalence of Tuberculosis in the northern and northeastern population, for the development of public policies to control this disease.
A tuberculose (TB) é uma doença que tem como agente etiológico o Mycobacterium tuberculosis.É transmitida através da inalação de aerossóis e conduz uma infecção granulomatosa no trato respiratório inferior. Os pacientes com TB apresentam um quadro clínico caracterizado por: febre, adinamia, anorexia, emagrecimento e sintomas específicos do local em que foi acometido. À vista disso, tem-se que a TB pode ser classificada em duas formas: pulmonar e extrapulmonar. Trata-se de um estudo ecológico ,descritivo,retrospectivo e quantitativo com base em dados secundários obtidos no Departamento de Informática do Sistema Único de Saúde (DATASUS).O estudo avaliou os casos confirmados de Tuberculose,na população do Norte e Nordeste do país, entre 2018 e 2023.O total de casos confirmados de Tuberculose , no Norte e Nordeste do Brasil, entre 2018 e 2023, foi de 222.594 casos, a população afetada pela tuberculose , no Norte e Nordeste do Brasil, entre 2018 e 2023, são homens, entre 20 e 39 anos, pardos, residentes da região Nordeste do país, apresentando a forma de tuberculose pulmonar e evoluindo para cura.Nota-se a necessidade de mais estudos acerca da prevalência da Tuberculose na população nortista e nordestina, para o desenvolvimento de políticas públicas de controle dessa doença
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Forest harvest management systems and residual phytomass affecting physical properties of a sandy soil
Organic carbon introduced in soils, mainly through organic matter, has a relevant role in various soil properties and is particularly important in sandy soils. In these soils, the input of organic material is necessary to ensure the sustainability of production systems. This study aimed to investigate the changes in total organic carbon content and its effect on physical properties in areas under different harvest management systems (HMS) after the harvest of eucalyptus. The study was performed in December 2017 in a Eucalyptus urograndis (clone E13) commercial plantation, in the municipality of Água Clara, Mato Grosso do Sul State, Brazil. The soil of this area was classified as a sandy-textured Neossolo quartzarênico, which corresponds to Quartzipsamments. Soil samples were taken from the 0.00-0.05, 0.05-0.10 and 0.10-0.20 m layers for determinations of aggregate stability, soil bulk density (BD), macroporosity (Macro), microporosity (Micro), total porosity (TP) and total organic carbon (TOC); and for calculation of carbon stock (CS). Total organic carbon and CS continued down into the 0.20-0.40, 0.40-0.60, 0.60-0.80, and 0.80-1.00 m layers. Soil mechanical penetration resistance (PR) was determined to the 0.40 m depth in 0.10 m intervals. Carbon content was evaluated in the aggregates of the 0.00-0.05 m layer after wet sieving in 2000, 1000, 250 and 53 μm diameter sieves. Statistical evaluation consisted of analysis of variance, the Tukey test, and regression for the sources of variation that showed significance at 5 %. The data suggest that keeping the residual phytomass on the soil surface can positively impact total organic carbon, with a smaller reduction under the cut-to-length harvest management system. However, carbon stock is greater at the layer of 0.20-0.60 m; as the soil has a sandy texture, carbon moves through the soil profile, which has lower soil mechanical penetration resistance at the surface layers (0.00-0.10 m), once more under the cut-to-length system. Maintaining crop residual phytomass on the soil surface in the cut-to-length harvest management system provides better soil physical conditions, with greater macroporosity (0.00-0.05 m), aggregates with more carbon, and lower soil mechanical penetration resistance compared to systems that maintain only part of the harvest residual phytomass or no residual phytomass on the surface
NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics
Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data
Brazilian Flora 2020: Leveraging the power of a collaborative scientific network
International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora