508 research outputs found

    The role of coherent vorticity in turbulent transport in resistive drift-wave turbulence

    Full text link
    The coherent vortex extraction method, a wavelet technique for extracting coherent vortices out of turbulent flows, is applied to simulations of resistive drift-wave turbulence in magnetized plasma (Hasegawa-Wakatani system). The aim is to retain only the essential degrees of freedom, responsible for the transport. It is shown that the radial density flux is carried by these coherent modes. In the quasi-hydrodynamic regime, coherent vortices exhibit depletion of the polarization-drift nonlinearity and vorticity strongly dominates strain, in contrast to the quasiadiabatic regime

    Stability of parallel wake flows in quasigeostrophic and frontal regimes

    No full text
    International audienceRecent laboratory experiments [G. Perret, A. Stegner, M. Farge, and T. Pichon, Phys. Fluids 18, 036603 (2006)] have shown that the vortex-street formed in the wake of a towed cylinder in a rotating shallow-water layer could present a strong cyclone-anticyclone asymmetry. In extreme cases, only large-scale anticyclones were observed in the far wake. This asymmetry occurs in the so-called frontal regime when the Rossby number is small and the surface deviation is large. This asymmetry may have various origins and in particular may be attributed to the asymmetry of the flow around the cylinder, to the linear stability property of the wake, or to its nonlinear evolution. To discriminate between these mechanisms, we study the stability of two idealized parallel flows in the quasigeostrophic and in the frontal regimes. These parallel flows correspond to two velocity profiles measured just behind the cylinder in a region where the perturbations are negligible. According to our linear stability analysis, the most unstable mode, in the frontal regime, is localized in the anticyclonic shear region whether the base flow profile is symmetric or not. On a linear basis, it is thus more the instability that imposes the asymmetry than the base flow. Direct numerical simulations of the synthetic parallel wake flows show that nonlinearity exacerbates the dominance of the anticyclonic mode linearly selected. By numerically studying the spatio-temporal evolution of a small perturbation localized in space, we show that, unlike incompressible two-dimensional wake flows and the symmetric wake in the quasigeostrophic regime, the parallel asymmetric wake is strongly convectively unstable in the frontal regime, and not absolutely unstable. When the surface deformation becomes large, the wake instability changes from the absolute instability in the quasi-geostrophic regime to the strongly convective instability of the frontal regime. This explains well the changes. © 2006 American Institute of Physics

    First radius measurements of very low mass stars with the VLTI

    Get PDF
    e present 4 very low mass stars radii measured with the VLTI using the 2.2 microns VINCI test instrument. The observations were carried out during the commissioning of the 104-meter-baseline with two 8-meter-telescopes. We measure angular diameters of 0.7-1.5 mas with accuracies of 0.04-0.11 mas, and for spectral type ranging from M0V to M5.5V. We determine an empirical mass-radius relation for M dwarfs based on all available radius measurements. The observed relation agrees well with theoretical models at the present accuracy level, with possible discrepancy around 0.5-0.8 Msolar that needs to be confirmed. In the near future, dozens of M dwarfs radii will be measured with 0.1-1% accuracy, with the VLTI, thanks to the improvements expected from the near infrared instrument AMBER. This will bring strong observational constraints on both atmosphere and interior physics.Comment: Accepted for publication in Astronomy and Astrophysics Letters, 4 pages, 3 figure

    Experimental Study of the Performance Water Distillation Device by Using Solar Energy

    Get PDF
    Evaluation and an experimental study of the performance of solar water distillation by using collector box with the aperture area of the water distillation of (1*0.6) m. The obtained results are shown that the amount of distilled water increased with increasing the solar radiation temperature. The highest solar water distillation efficiency was found equal to 11.4% for rainy and partially cloudy day between 8am to 10am for 12/4/2016. Also the second higher efficiency was found equal to 5.155 for a sunny day between 10am to 12 pm for 20/4/2016. The results indicated that the distilled water can be obtained on if even the weather condition very bad and the solar radiation very low as well as the higher amount of distilled water can be obtained at higher values of solar radiation intensity. Experimental results showed the higher ambient temperature lower the condensation, which lowering the amount of distilled water

    Individual quality assessment of autografting by probability estimation for clinical endpoints: a prospective validation study from the European group for blood and marrow transplantation.

    Get PDF
    The aim of supportive autografting is to reduce the side effects from stem cell transplantation and avoid procedure-related health disadvantages for patients at the lowest possible cost and resource expenditure. Economic evaluation of health care is becoming increasingly important. We report clinical and laboratory data collected from 397 consecutive adult patients (173 non-Hodgkin lymphoma, 30 Hodgkin lymphoma, 160 multiple myeloma, 7 autoimmune diseases, and 28 acute leukemia) who underwent their first autologous peripheral blood stem cell transplantation (PBSCT). We considered primary endpoints evaluating health economic efficacy (eg, antibiotic administration, transfusion of blood components, and time in hospital), secondary endpoints evaluating toxicity (in accordance with Common Toxicity Criteria), and tertiary endpoints evaluating safety (ie, the risk of regimen-related death or disease progression within the first year after PBSCT). A time-dependent grading of efficacy is proposed with day 21 for multiple myeloma and day 25 for the other disease categories (depending on the length of the conditioning regimen) as the acceptable maximum time in hospital, which together with antibiotics, antifungal, or transfusion therapy delineates four groups: favorable (≤7 days on antibiotics and no transfusions; ≤21 [25] days in hospital), intermediate (from 7 to 10 days on antibiotics and 7 days on antibiotics, >3 but 30/34 days in hospital after transplantation), and very unfavorable (>10 days on antibiotics, >6 transfusions; >30 to 34 days in hospital). The multivariate analysis showed that (1) PBSC harvests of ≥4 × 106/kg CD34 + cells in 1 apheresis procedure were associated with a favorable outcome in all patient categories except acute myelogenous leukemia and acute lymphoblastic leukemia (P = .001), (2) ≥5 × 106/kg CD34 + cells infused predicted better transplantation outcome in all patient categories (P 500 mL) (P = .002), and (5) patients with a central venous catheter during both collection and infusion of PBSC had a more favorable outcome post-PBSCT than peripheral access (P = .007). The type of mobilization regimen did not affect the outcome of auto-PBSCT. The present study identified predictive variables, which may be useful in future individual pretransplantation probability evaluations with the goal to improve supportive care

    Straightening of Thermal Fluctuations in Semi-Flexible Polymers by Applied Tension

    Get PDF
    We investigate the propagation of a suddenly applied tension along a thermally excited semi-flexible polymer using analytical approximations, scaling arguments and numerical simulation. This problem is inherently non-linear. We find sub-diffusive propagation with a dynamical exponent of 1/4. By generalizing the internal elasticity, we show that tense strings exhibit qualitatively different tension profiles and propagation with an exponent of 1/2.Comment: Latex file; with three postscript figures; .ps available at http://dept.physics.upenn.edu/~nelson/pull.p

    Cumulants as non-Gaussian qualifiers

    Full text link
    We discuss the requirements of good statistics for quantifying non-Gaussianity in the Cosmic Microwave Background. The importance of rotational invariance and statistical independence is stressed, but we show that these are sometimes incompatible. It is shown that the first of these requirements prefers a real space (or wavelet) formulation, whereas the latter favours quantities defined in Fourier space. Bearing this in mind we decide to be eclectic and define two new sets of statistics to quantify the level of non-Gaussianity. Both sets make use of the concept of cumulants of a distribution. However, one set is defined in real space, with reference to the wavelet transform, whereas the other is defined in Fourier space. We derive a series of properties concerning these statistics for a Gaussian random field and show how one can relate these quantities to the higher order moments of temperature maps. Although our frameworks lead to an infinite hierarchy of quantities we show how cosmic variance and experimental constraints give a natural truncation of this hierarchy. We then focus on the real space statistics and analyse the non-Gaussian signal generated by points sources obscured by large scale Gaussian fluctuations. We conclude by discussing the practical implementations of these techniques

    Identifying nonlinear wave interactions in plasmas using two-point measurements: a case study of Short Large Amplitude Magnetic Structures (SLAMS)

    Get PDF
    A framework is described for estimating Linear growth rates and spectral energy transfers in turbulent wave-fields using two-point measurements. This approach, which is based on Volterra series, is applied to dual satellite data gathered in the vicinity of the Earth's bow shock, where Short Large Amplitude Magnetic Structures (SLAMS) supposedly play a leading role. The analysis attests the dynamic evolution of the SLAMS and reveals an energy cascade toward high-frequency waves.Comment: 26 pages, 13 figure

    Hematopoietic stem cell therapy for autoimmune diseases - Clinical experience and mechanisms

    Get PDF
    With accumulating evidence and improved outcomes along with recognition that modern biological therapies are not universally effective, require chronic administration and have high acquisition costs, hematopoietic stem cell transplantation (HSCT) has become an emerging direction for cell therapy in autoimmune diseases (ADs). The goal of this therapy is to induce medication-free remissions by resetting the immune system into a naĂŻve and self-tolerant state through eradication of the autoreactive immunologic memory and profound re-configuration of the immune system induced by the transplant procedure. Safety of HSCT has generally improved by implementing internal quality management and external accreditation. Inter-disciplinary guidelines for patient selection, transplant technique and supportive care along with greater center experience should optimize safe and appropriate delivery of HSCT in specific ADs. In this review, we discuss the current role and future perspectives of HSCT in AD, focusing on recent published clinical and scientific studies and recommendations in the field
    • …
    corecore