13 research outputs found

    Трендсеттінг як ключовий фактор управління інноваційними ризиками індустрії моди

    Get PDF
    Індустрія моди нового тисячоріччя перетворилася в багатомільйонний сектор економіки, у котрому інноваційна діяльність грає ключову роль. Інновації в дизайні сучасного костюма з інструмента вдосконалювання характеристик об’єкта перетворюються в одну з основних його характеристик, тому фешн-проекти є інноваційними за своєю природою [2]

    Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    Get PDF
    Organohalide compounds such as chloroethenes, chloroethanes, and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides, and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respiring bacteria and also via hydrolytic, oxygenic, and reductive mechanisms by aerobic bacteria. Microbial ecogenomics has enabled us to not only study the microbiology involved in these complex processes but also develop tools to better monitor and assess these sites during bioremediation. Microbial ecogenomics have capitalized on recent advances in high-throughput and -output genomics technologies in combination with microbial physiology studies to address these complex bioremediation problems at a system level. Advances in environmental metagenomics, transcriptomics, and proteomics have provided insights into key genes and their regulation in the environment. They have also given us clues into microbial community structures, dynamics, and functions at contaminated sites. These techniques have not only aided us in understanding the lifestyles of common organohalide respirers, for example Dehalococcoides, Dehalobacter, and Desulfitobacterium, but also provided insights into novel and yet uncultured microorganisms found in organohalide respiring consortia. In this paper, we look at how ecogenomic studies have aided us to understand the microbial structures and functions in response to environmental stimuli such as the presence of chlorinated pollutant

    Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river

    Get PDF
    The impact of the installation of a technologically advanced wastewater treatment plant (WWTP) on the benthic microbial community of a vinyl chloride (VC) impacted eutrophic river was examined two years before, and three and four years after installation of the WWTP. Reduced dissolved organic carbon and increased dissolved oxygen concentrations in surface water and reduced total organic carbon and total nitrogen content in the sediment were recorded in the post-WWTP samples. Pyrosequencing of bacterial 16S rRNA gene fragments in sediment cores showed reduced relative abundance of heterotrophs and fermenters such as Chloroflexi and Firmicutes in more oxic and nutrient poor post-WWTP sediments. Similarly, quantitative PCR analysis showed 1-3 orders of magnitude reduction in phylogenetic and functional genes of sulphate reducers, denitrifiers, ammonium oxidizers, methanogens and VC-respiring Dehalococcoides mccartyi. In contrast, members of Proteobacteria adapted to nutrient-poor conditions were enriched in post-WWTP samples. This transition in the trophic state of the hyporheic sediments reduced but did not abolish the VC respiration potential in the post-WWTP sediments as an important hyporheic sediment function. Our results highlight effective nutrient load reduction and parallel microbial ecological state restoration of a human-stressed urban river as a result of installation of a WWTP.Peer reviewe

    Meta-omics approaches to understand and improve wastewater treatment systems

    Get PDF
    Biological treatment of wastewaters depends on microbial processes, usually carried out by mixed microbial communities. Environmental and operational factors can affect microorganisms and/or impact microbial community function, and this has repercussion in bioreactor performance. Novel high-throughput molecular methods (metagenomics, metatranscriptomics, metaproteomics, metabolomics) are providing detailed knowledge on the microorganisms governing wastewater treatment systems and on their metabolic capabilities. The genomes of uncultured microbes with key roles in wastewater treatment plants (WWTP), such as the polyphosphate-accumulating microorganism Candidatus Accumulibacter phosphatis, the nitrite oxidizer Candidatus Nitrospira defluvii or the anammox bacterium Candidatus Kuenenia stuttgartiensis are now available through metagenomic studies. Metagenomics allows to genetically characterize full-scale WWTP and provides information on the lifestyles and physiology of key microorganisms for wastewater treatment. Integrating metagenomic data of microorganisms with metatranscriptomic, metaproteomic and metabolomic information provides a better understanding of the microbial responses to perturbations or environmental variations. Data integration may allow the creation of predictive behavior models of wastewater ecosystems, which could help in an improved exploitation of microbial processes. This review discusses the impact of meta-omic approaches on the understanding of wastewater treatment processes, and the implications of these methods for the optimization and design of wastewater treatment bioreactors.Research was supported by the Spanish Ministry of Education and Science (Contract Project CTQ2007-64324 and CONSOLIDER-CSD 2007-00055) and the Regional Government of Castilla y Leon (Ref. VA038A07). Research of AJMS is supported by the European Research Council (Grant 323009

    Independent and combined effects of improved water, sanitation, and hygiene, and improved complementary feeding, on child stunting and anaemia in rural Zimbabwe: a cluster-randomised trial.

    Get PDF
    BACKGROUND: Child stunting reduces survival and impairs neurodevelopment. We tested the independent and combined effects of improved water, sanitation, and hygiene (WASH), and improved infant and young child feeding (IYCF) on stunting and anaemia in in Zimbabwe. METHODS: We did a cluster-randomised, community-based, 2 × 2 factorial trial in two rural districts in Zimbabwe. Clusters were defined as the catchment area of between one and four village health workers employed by the Zimbabwe Ministry of Health and Child Care. Women were eligible for inclusion if they permanently lived in clusters and were confirmed pregnant. Clusters were randomly assigned (1:1:1:1) to standard of care (52 clusters), IYCF (20 g of a small-quantity lipid-based nutrient supplement per day from age 6 to 18 months plus complementary feeding counselling; 53 clusters), WASH (construction of a ventilated improved pit latrine, provision of two handwashing stations, liquid soap, chlorine, and play space plus hygiene counselling; 53 clusters), or IYCF plus WASH (53 clusters). A constrained randomisation technique was used to achieve balance across the groups for 14 variables related to geography, demography, water access, and community-level sanitation coverage. Masking of participants and fieldworkers was not possible. The primary outcomes were infant length-for-age Z score and haemoglobin concentrations at 18 months of age among children born to mothers who were HIV negative during pregnancy. These outcomes were analysed in the intention-to-treat population. We estimated the effects of the interventions by comparing the two IYCF groups with the two non-IYCF groups and the two WASH groups with the two non-WASH groups, except for outcomes that had an important statistical interaction between the interventions. This trial is registered with ClinicalTrials.gov, number NCT01824940. FINDINGS: Between Nov 22, 2012, and March 27, 2015, 5280 pregnant women were enrolled from 211 clusters. 3686 children born to HIV-negative mothers were assessed at age 18 months (884 in the standard of care group from 52 clusters, 893 in the IYCF group from 53 clusters, 918 in the WASH group from 53 clusters, and 991 in the IYCF plus WASH group from 51 clusters). In the IYCF intervention groups, the mean length-for-age Z score was 0·16 (95% CI 0·08-0·23) higher and the mean haemoglobin concentration was 2·03 g/L (1·28-2·79) higher than those in the non-IYCF intervention groups. The IYCF intervention reduced the number of stunted children from 620 (35%) of 1792 to 514 (27%) of 1879, and the number of children with anaemia from 245 (13·9%) of 1759 to 193 (10·5%) of 1845. The WASH intervention had no effect on either primary outcome. Neither intervention reduced the prevalence of diarrhoea at 12 or 18 months. No trial-related serious adverse events, and only three trial-related adverse events, were reported. INTERPRETATION: Household-level elementary WASH interventions implemented in rural areas in low-income countries are unlikely to reduce stunting or anaemia and might not reduce diarrhoea. Implementation of these WASH interventions in combination with IYCF interventions is unlikely to reduce stunting or anaemia more than implementation of IYCF alone. FUNDING: Bill & Melinda Gates Foundation, UK Department for International Development, Wellcome Trust, Swiss Development Cooperation, UNICEF, and US National Institutes of Health.The SHINE trial is funded by the Bill & Melinda Gates Foundation (OPP1021542 and OPP113707); UK Department for International Development; Wellcome Trust, UK (093768/Z/10/Z, 108065/Z/15/Z and 203905/Z/16/Z); Swiss Agency for Development and Cooperation; US National Institutes of Health (2R01HD060338-06); and UNICEF (PCA-2017-0002)

    Biodegradation of cis-Dichloroethene and Vinyl Chloride at Oxic/anoxic Interface of Freshwater Sediment Under Redox Fluctuations

    No full text
    cis-Dichloroethene (cDCE) and vinyl chloride (VC) in groundwater migrating through the oxic/anoxic interface (OAI) of freshwater sediment can be degraded by anaerobic reductive dechlorination, aerobic (co)metabolic degradation or combination of both. We tested this using microcosms prepared from OAI sediment samples incubated under varying oxic/anoxic incubations. In microcosms containing low organic carbon sediment, oxygen exposure resulted in substantial decay of strictly anaerobic Dehalococcoides mccartyi (Dcm) and impaired its resilience under subsequent anoxic conditions. VC was metabolically oxidized in these microcosms the sediment of which had the history of exposure to high VC concentration reaching OAI at the site. However, no metabolic aerobic cDCE degradation was found. In contrast, in microcosms with high organic carbon sediment, Dcm seemed protected against oxygen, reductively dechlorinating cDCE/VC-to-ethene and subsequent ethene-to-CO2 oxidation by ethenotrophs. The apparent lack of mass balance might be mischaracterized as metabolic cDCE/VC oxidation. Dcm showed an unrecognized resilience against oxygen toxicity in these microcosms the sediment of which were characterized with historically active reductive dechlorination and negligible VC reaching OAI. Our results imply prolonged VC exposure as a prerequisite for evolution of VC-oxidizers from ethene-oxidizers. However, MiSeq sequencing of partial etnE gene involved in VC/ethene aerobic degradation did not reveal sequence divergence responsible for VC-oxidation vs ethene-oxidation lifestyle

    Geochemical Parameters and Reductive Dechlorination Determine Aerobic Cometabolic vs Aerobic Metabolic Vinyl Chloride Biodegradation at Oxic/Anoxic Interface of Hyporheic Zones

    No full text
    Hyporheic zones mediate vinyl chloride (VC) biodegradation in groundwater discharging into surface waters. At the oxic/anoxic interface (OAI) of hyporheic zones subjected to redox oscillations, VC is degraded via coexisting aerobic ethenotrophic and anaerobic reductive dechlorination pathways. However, the identity of aerobic VC degradation pathways (cometabolic vs metabolic) and their interactions with reductive dechlorination in relation to riverbed sediment geochemistry remain ill-defined. We addressed this using microcosms containing OAI sediments incubated under fluctuating oxic/anoxic atmosphere. Under oxic atmosphere, aerobic metabolic VC oxidation was absent in sediments with high total organic carbon (TOC) and VC was reductively dechlorinated to ethene. Ethene was oxidized by ethenotrophs that can degrade VC cometabolically. Contrastingly, VC was metabolically oxidized by ethenotrophs in low-TOC sediments with low reductive dechlorination potential. Accordingly, enrichment and isolation of metabolic VC-oxidizing ethenotrophs was successful only from the low-TOC sediment. Sequence analysis of etnE genes from the microcosms as well phylogenetic typing of the isolates showed that ethenotrophs in the sediments were facultative anaerobic Proteobacteria capable of coping with OAI-associated redox fluctuations. Our results suggest that local sediment heterogeneity supports/selects divergent VC degradation processes at the OAI and that high reductive dechlorination potential suppresses development of aerobic metabolic VC oxidation potential.</p
    corecore