8 research outputs found

    Velocity-selected production of 2S3 metastable positronium

    Get PDF
    Positronium in the 2 3 S metastable state exhibits a low electrical polarizability and a long lifetime (1140 ns), making it a promising candidate for interferometry experiments with a neutral matter-antimatter system. In the present work, 2 3 S positronium is produced, in the absence of an electric field, via spontaneous radiative decay from the 3 3 P level populated with a 205-nm UV laser pulse. Thanks to the short temporal length of the pulse, 1.5 ns full width at half maximum, different velocity populations of a positronium cloud emitted from a nanochanneled positron-positronium converter were selected by delaying the excitation pulse with respect to the production instant. 2 3 S positronium atoms with velocity tuned between 7 7 10 4 ms 121 and 10 7 10 4 ms 121 were thus produced. Depending on the selected velocity, a 2 3 S production efficiency ranging from 3c0.8% to 3c1.7%, with respect to the total amount of emitted positronium, was obtained. The observed results give a branching ratio for the 3 3 P-2 3 S spontaneous decay of (9.7 \ub1 2.7)%. The present velocity selection technique could allow one to produce an almost monochromatic beam of 3c1 7 10 3 2 3 S atoms with a velocity spread of <10 4 ms 121 and an angular divergence of 3c50 mrad

    A 3c100\u202f\u3bcm-resolution position-sensitive detector for slow positronium

    Get PDF
    In this work we describe a high-resolution position-sensitive detector for positronium. The detection scheme is based on the photoionization of positronium in a magnetic field and the imaging of the freed positrons with a Microchannel Plate assembly. A spatial resolution of (88 \ub1 5) \u3bcm on the position of the ionized positronium \u2013in the plane perpendicular to a 1.0 T magnetic field\u2013 is obtained. The possibility to apply the detection scheme for monitoring the emission into vacuum of positronium from positron/positronium converters, imaging positronium excited to a selected state and characterizing its spatial distribution is discussed. Ways to further improve the spatial resolution of the method are presented

    Pulsed production of antihydrogen

    Get PDF
    Antihydrogen atoms with K or sub-K temperature are a powerful tool to precisely probe the validity of fundamental physics laws and the design of highly sensitive experiments needs antihydrogen with controllable and well defined conditions. We present here experimental results on the production of antihydrogen in a pulsed mode in which the time when 90% of the atoms are produced is known with an uncertainty of ~250 ns. The pulsed source is generated by the charge-exchange reaction between Rydberg positronium atoms\u2014produced via the injection of a pulsed positron beam into a nanochanneled Si target, and excited by laser pulses\u2014and antiprotons, trapped, cooled and manipulated in electromagnetic traps. The pulsed production enables the control of the antihydrogen temperature, the tunability of the Rydberg states, their de-excitation by pulsed lasers and the manipulation through electric field gradients. The production of pulsed antihydrogen is a major landmark in the AEgIS experiment to perform direct measurements of the validity of the Weak Equivalence Principle for antimatter
    corecore