20 research outputs found

    Developmental role of the tomato Mediator complex subunit MED18 in pollen ontogeny

    Full text link
    [EN] Pollen development is a crucial step in higher plants, which not only makes possible plant fertilization and seed formation, but also determines fruit quality and yield in crop species. Here, we reported a tomato T-DNA mutant, pollen deficient1 (pod1), characterized by an abnormal anther development and the lack of viable pollen formation, which led to the production of parthenocarpic fruits. Genomic analyses and the characterization of silencing lines proved that pod1 mutant phenotype relies on the tomato SlMED18 gene encoding the subunit 18 of Mediator multi-protein complex involved in RNA polymerase II transcription machinery. The loss of SlMED18 function delayed tapetum degeneration, which resulted in deficient microspore development and scarce production of viable pollen. A detailed histological characterization of anther development proved that changes during microgametogenesis and a significant delay in tapetum degeneration are associated with a high proportion of degenerated cells and, hence, should be responsible for the low production of functional pollen grains. Expression of pollen marker genes indicated that SlMED18 is essential for the proper transcription of a subset of genes specifically required to pollen formation and fruit development, revealing a key role of SlMED18 in male gametogenesis of tomato. Additionally, SlMED18 is able to rescue developmental abnormalities of the Arabidopsis med18 mutant, indicating that most biological functions have been conserved in both species. Significance Statement Pollination is a key development process in the life cycle of flowering plants. Genetic and molecular characterization of a tomato mutant have led to the identification of POD1 gene encoding the Mediator complex subunit MED18 whose function is required for tapetum tissue degeneration, a crucial step for pollen development. Furthermore, we show that MED18 fulfils an essential role in tomato, ensuring proper gene regulation during pollen ontogeny.This research was supported by the Spanish Ministry of Economy and Competitiveness (grants AGL2015-64991-C3-1-R, AGL2015-64991-C3-2-R, AGL2015-64991-C3-3-R, BIO2013-43098-R, BFU2016-77243-P and BIO2016-77559-R) and Junta de Andalucia (grant P12-AGR-1482).Pérez Martín, F.; Juan Yuste-Lisbona, F.; Pineda, B.; García Sogo, B.; Del Olmo, I.; Alché, JDD.; Egea, I.... (2018). Developmental role of the tomato Mediator complex subunit MED18 in pollen ontogeny. The Plant Journal. 96(2):300-315. https://doi.org/10.1111/tpj.14031S300315962Allen, B. L., & Taatjes, D. J. (2015). The Mediator complex: a central integrator of transcription. Nature Reviews Molecular Cell Biology, 16(3), 155-166. doi:10.1038/nrm3951Atarés, A., Moyano, E., Morales, B., Schleicher, P., García-Abellán, J. O., Antón, T., … Pineda, B. (2011). An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. Plant Cell Reports, 30(10), 1865-1879. doi:10.1007/s00299-011-1094-yBaulcombe, D. C. (1996). Mechanisms of Pathogen-Derived Resistance to Viruses in Transgenic Plants. The Plant Cell, 1833-1844. doi:10.1105/tpc.8.10.1833Bourbon, H.-M. (2008). Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Research, 36(12), 3993-4008. doi:10.1093/nar/gkn349Buendía-Monreal, M., & Gillmor, C. S. (2016). Mediator: A key regulator of plant development. Developmental Biology, 419(1), 7-18. doi:10.1016/j.ydbio.2016.06.009Canales, C., Bhatt, A. M., Scott, R., & Dickinson, H. (2002). EXS, a Putative LRR Receptor Kinase, Regulates Male Germline Cell Number and Tapetal Identity and Promotes Seed Development in Arabidopsis. Current Biology, 12(20), 1718-1727. doi:10.1016/s0960-9822(02)01151-xCarbonell-Bejerano, P., Urbez, C., Carbonell, J., Granell, A., & Perez-Amador, M. A. (2010). A Fertilization-Independent Developmental Program Triggers Partial Fruit Development and Senescence Processes in Pistils of Arabidopsis. Plant Physiology, 154(1), 163-172. doi:10.1104/pp.110.160044Chadick, J. Z., & Asturias, F. J. (2005). Structure of eukaryotic Mediator complexes. Trends in Biochemical Sciences, 30(5), 264-271. doi:10.1016/j.tibs.2005.03.001Chuang, C.-F., & Meyerowitz, E. M. (2000). Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 97(9), 4985-4990. doi:10.1073/pnas.060034297Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xColeman, A. W., & Goff, L. J. (1985). Applications of Fluorochromes to Pollen Biology. I. Mithramycin and 4′,6-Diamidino-2-Phenylindole (Dapi) as Vital Stains and for Quantitation of Nuclear Dna. Stain Technology, 60(3), 145-154. doi:10.3109/10520298509113905Conaway, R. C., Sato, S., Tomomori-Sato, C., Yao, T., & Conaway, J. W. (2005). The mammalian Mediator complex and its role in transcriptional regulation. Trends in Biochemical Sciences, 30(5), 250-255. doi:10.1016/j.tibs.2005.03.002Cottrell, H. J. (1948). Tetrazolium Salt as a Seed Germination Indicator. Annals of Applied Biology, 35(1), 123-131. doi:10.1111/j.1744-7348.1948.tb07355.xCrane, M. B. (1915). Heredity of types of inflorescence and fruits in tomato. Journal of Genetics, 5(1), 1-11. doi:10.1007/bf02982149Davoine, C., Abreu, I. N., Khajeh, K., Blomberg, J., Kidd, B. N., Kazan, K., … Björklund, S. (2017). Functional metabolomics as a tool to analyze Mediator function and structure in plants. PLOS ONE, 12(6), e0179640. doi:10.1371/journal.pone.0179640Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-yFallath, T., Kidd, B. N., Stiller, J., Davoine, C., Björklund, S., Manners, J. M., … Schenk, P. M. (2017). MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana. PLOS ONE, 12(4), e0176022. doi:10.1371/journal.pone.0176022Feng, B., Lu, D., Ma, X., Peng, Y., Sun, Y., Ning, G., & Ma, H. (2012). Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development. The Plant Journal, 72(4), 612-624. doi:10.1111/j.1365-313x.2012.05104.xGillaspy, G., Ben-David, H., & Gruissem, W. (1993). Fruits: A Developmental Perspective. The Plant Cell, 1439-1451. doi:10.1105/tpc.5.10.1439Gleave, A. P. (1992). A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology, 20(6), 1203-1207. doi:10.1007/bf00028910Gómez, J. F., Talle, B., & Wilson, Z. A. (2015). Anther and pollen development: A conserved developmental pathway. Journal of Integrative Plant Biology, 57(11), 876-891. doi:10.1111/jipb.12425Gorman, S. W., McCormick, S., & Rick, C. (1997). Male Sterility in Tomato. Critical Reviews in Plant Sciences, 16(1), 31-53. doi:10.1080/07352689709701945Helliwell, C. (2003). Constructs and methods for high-throughput gene silencing in plants. Methods, 30(4), 289-295. doi:10.1016/s1046-2023(03)00036-7Honys, D., & Twell, D. (2004). Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biology, 5(11). doi:10.1186/gb-2004-5-11-r85Jeong, H.-J., Kang, J.-H., Zhao, M., Kwon, J.-K., Choi, H.-S., Bae, J. H., … Kang, B.-C. (2014). Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. Journal of Experimental Botany, 65(22), 6693-6709. doi:10.1093/jxb/eru389Jimenez-Lopez, J. C., Zienkiewicz, A., Zienkiewicz, K., Alché, J. D., & Rodríguez-García, M. I. (2015). Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed. Protoplasma, 253(2), 517-530. doi:10.1007/s00709-015-0830-5Kornberg, R. D. (2005). Mediator and the mechanism of transcriptional activation. Trends in Biochemical Sciences, 30(5), 235-239. doi:10.1016/j.tibs.2005.03.011Lai, Z., Schluttenhofer, C. M., Bhide, K., Shreve, J., Thimmapuram, J., Lee, S. Y., … Mengiste, T. (2014). MED18 interaction with distinct transcription factors regulates multiple plant functions. Nature Communications, 5(1). doi:10.1038/ncomms4064Larivière, L., Geiger, S., Hoeppner, S., Röther, S., Sträßer, K., & Cramer, P. (2006). Structure and TBP binding of the Mediator head subcomplex Med8–Med18–Med20. Nature Structural & Molecular Biology, 13(10), 895-901. doi:10.1038/nsmb1143Lee, S. K., Chen, X., Huang, L., & Stargell, L. A. (2013). The head module of Mediator directs activation of preloaded RNAPII in vivo. Nucleic Acids Research, 41(22), 10124-10134. doi:10.1093/nar/gkt796Li, D.-D., Xue, J.-S., Zhu, J., & Yang, Z.-N. (2017). Gene Regulatory Network for Tapetum Development in Arabidopsis thaliana. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01559Liu, X., Huang, J., Parameswaran, S., Ito, T., Seubert, B., Auer, M., … Zhao, D. (2009). The SPOROCYTELESS/NOZZLE Gene Is Involved in Controlling Stamen Identity in Arabidopsis. Plant Physiology, 151(3), 1401-1411. doi:10.1104/pp.109.145896Lora, J., Hormaza, J. I., Herrero, M., & Gasser, C. S. (2011). Seedless fruits and the disruption of a conserved genetic pathway in angiosperm ovule development. Proceedings of the National Academy of Sciences, 108(13), 5461-5465. doi:10.1073/pnas.1014514108Lozano, R., Angosto, T., Gómez, P., Payán, C., Capel, J., Huijser, P., … Martı́nez-Zapater, J. M. (1998). Tomato Flower Abnormalities Induced by Low Temperatures Are Associated with Changes of Expression of MADS-Box Genes. Plant Physiology, 117(1), 91-100. doi:10.1104/pp.117.1.91Ma, H. (2005). MOLECULAR GENETIC ANALYSES OF MICROSPOROGENESIS AND MICROGAMETOGENESIS IN FLOWERING PLANTS. Annual Review of Plant Biology, 56(1), 393-434. doi:10.1146/annurev.arplant.55.031903.141717McNeil, K. J., & Smith, A. G. (2009). A glycine-rich protein that facilitates exine formation during tomato pollen development. Planta, 231(4), 793-808. doi:10.1007/s00425-009-1089-xMercier, R. (2003). The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis. Development, 130(>14), 3309-3318. doi:10.1242/dev.00550Mukundan, B., & Ansari, A. (2011). Novel Role for Mediator Complex Subunit Srb5/Med18 in Termination of Transcription. Journal of Biological Chemistry, 286(43), 37053-37057. doi:10.1074/jbc.c111.295915Muschietti, J., Dircks, L., Vancanneyt, G., & McCormick, S. (1994). LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. The Plant Journal, 6(3), 321-338. doi:10.1046/j.1365-313x.1994.06030321.xOzga, J. A., & Reinecke, D. M. (2003). Hormonal Interactions in Fruit Development. Journal of Plant Growth Regulation, 22(1), 73-81. doi:10.1007/s00344-003-0024-9Pacini, E. (2010). Relationships between Tapetum, Loculus, and Pollen during Development. International Journal of Plant Sciences, 171(1), 1-11. doi:10.1086/647923Pérez-Martín, F., Yuste-Lisbona, F. J., Pineda, B., Angarita-Díaz, M. P., García-Sogo, B., Antón, T., … Lozano, R. (2017). A collection of enhancer trap insertional mutants for functional genomics in tomato. Plant Biotechnology Journal, 15(11), 1439-1452. doi:10.1111/pbi.12728Pina, C., Pinto, F., Feijó, J. A., & Becker, J. D. (2005). Gene Family Analysis of the Arabidopsis Pollen Transcriptome Reveals Biological Implications for Cell Growth, Division Control, and Gene Expression Regulation. Plant Physiology, 138(2), 744-756. doi:10.1104/pp.104.057935Polowick, P. L., & Sawhney, V. K. (1993). An ultrastructural study of pollen development in tomato (Lycopersicon esculentum). I. Tetrad to early binucleate microspore stage. Canadian Journal of Botany, 71(8), 1039-1047. doi:10.1139/b93-120Polowick, P. L., & Sawhney, V. K. (1993). An ultrastructural study of pollen development in tomato (Lycopersicon esculentum). II. Pollen maturation. Canadian Journal of Botany, 71(8), 1048-1055. doi:10.1139/b93-121Rutley, N., & Twell, D. (2015). A decade of pollen transcriptomics. Plant Reproduction, 28(2), 73-89. doi:10.1007/s00497-015-0261-7Samanta, S., & Thakur, J. K. (2015). Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00757Schiefthaler, U., Balasubramanian, S., Sieber, P., Chevalier, D., Wisman, E., & Schneitz, K. (1999). Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 96(20), 11664-11669. doi:10.1073/pnas.96.20.11664Scott, R. J. (2004). Stamen Structure and Function. THE PLANT CELL ONLINE, 16(suppl_1), S46-S60. doi:10.1105/tpc.017012Smirnova, A., Leide, J., & Riederer, M. (2012). Deficiency in a Very-Long-Chain Fatty Acid β-Ketoacyl-Coenzyme A Synthase of Tomato Impairs Microgametogenesis and Causes Floral Organ Fusion. Plant Physiology, 161(1), 196-209. doi:10.1104/pp.112.206656Sorensen, A.-M., Kröber, S., Unte, U. S., Huijser, P., Dekker, K., & Saedler, H. (2003). TheArabidopsis ABORTED MICROSPORES(AMS) gene encodes a MYC class transcription factor. The Plant Journal, 33(2), 413-423. doi:10.1046/j.1365-313x.2003.01644.xWang, Y., Hu, Z., Zhang, J., Yu, X., Guo, J.-E., Liang, H., … Chen, G. (2018). Silencing SlMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion. Scientific Reports, 8(1). doi:10.1038/s41598-018-21679-1Wesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., … Waterhouse, P. M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27(6), 581-590. doi:10.1046/j.1365-313x.2001.01105.xWilson, Z. A., & Zhang, D.-B. (2009). From Arabidopsis to rice: pathways in pollen development. Journal of Experimental Botany, 60(5), 1479-1492. doi:10.1093/jxb/erp095Wilson, Z. A., Morroll, S. M., Dawson, J., Swarup, R., & Tighe, P. J. (2001). The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. The Plant Journal, 28(1), 27-39. doi:10.1046/j.1365-313x.2001.01125.xWiner, J., Jung, C. K. S., Shackel, I., & Williams, P. M. (1999). Development and Validation of Real-Time Quantitative Reverse Transcriptase–Polymerase Chain Reaction for Monitoring Gene Expression in Cardiac Myocytesin Vitro. Analytical Biochemistry, 270(1), 41-49. doi:10.1006/abio.1999.4085Yang, W.-C., Ye, D., Xu, J., & Sundaresan, V. (1999). The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes & Development, 13(16), 2108-2117. doi:10.1101/gad.13.16.2108Yang, C.-Y., Spielman, M., Coles, J. P., Li, Y., Ghelani, S., Bourdon, V., … Dickinson, H. G. (2003). TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. The Plant Journal, 34(2), 229-240. doi:10.1046/j.1365-313x.2003.01713.xYang, C., Vizcay-Barrena, G., Conner, K., & Wilson, Z. A. (2007). MALE STERILITY1 Is Required for Tapetal Development and Pollen Wall Biosynthesis. The Plant Cell, 19(11), 3530-3548. doi:10.1105/tpc.107.054981Yuan, W., Li, X., Chang, Y., Wen, R., Chen, G., Zhang, Q., & Wu, C. (2009). Mutation of the rice genePAIR3results in lack of bivalent formation in meiosis. The Plant Journal, 59(2), 303-315. doi:10.1111/j.1365-313x.2009.03870.xYuste-Lisbona, F. J., Quinet, M., Fernández-Lozano, A., Pineda, B., Moreno, V., Angosto, T., & Lozano, R. (2016). Characterization of vegetative inflorescence (mc-vin) mutant provides new insight into the role of MACROCALYX in regulating inflorescence development of tomato. Scientific Reports, 6(1). doi:10.1038/srep18796Zhao, D.-Z. (2002). The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes & Development, 16(15), 2021-2031. doi:10.1101/gad.997902Zheng, Z., Guan, H., Leal, F., Grey, P. H., & Oppenheimer, D. G. (2013). Mediator Subunit18 Controls Flowering Time and Floral Organ Identity in Arabidopsis. PLoS ONE, 8(1), e53924. doi:10.1371/journal.pone.0053924Zhou, S., Wang, Y., Li, W., Zhao, Z., Ren, Y., Wang, Y., … Wan, J. (2011). Pollen Semi-Sterility1 Encodes a Kinesin-1–Like Protein Important for Male Meiosis, Anther Dehiscence, and Fertility in Rice. The Plant Cell, 23(1), 111-129. doi:10.1105/tpc.109.07369

    Toward plant defense mechanisms against root pathogens

    No full text
    As we consider the importance of the plant microbiome for sustainable agriculture,we note that some of these organisms are beneficial to plants, others arecommensal, and the third category includes pathogens. Root pathogens, such asFusarium oxysporum, are of particular interest as these can be controlled byeffective plant defense mechanisms or by biocontrol microbes. This chapterreviews recent findings of plant defense mechanisms against root pathogens.This process can be greatly assisted by microbes that prime the plant, leading toinduced systemic resistance. These microbes prepare the plant to mount a fasterand stronger response against root pathogens at a very low energetic cost to theplant. New strategies to develop resistance come from the knowledge that agriculturallyimportant root pathogens often hijack the wrong defense pathway inplants. An interesting emerging area is the plant defense mechanism that leads tothe production of root exudates which can result in the recruitment of beneficialmicrobes that assist the plant in developing resistance. Future work may focus onthe selection of plants whose defense responses against pathogens may be betterassisted by agriculturally important beneficial microbes

    MEDIATOR18 and MEDIATOR20 confer susceptibility to Fusarium oxysporum in Arabidopsis thaliana

    No full text
    The conserved protein complex known as Mediator conveys transcriptional signals by acting as an intermediary between transcription factors and RNA polymerase II. As a result, Mediator subunits play multiple roles in regulating developmental as well as abiotic and biotic stress pathways. In this report we identify the head domain subunits MEDIATOR18 and MEDIATOR20 as important susceptibility factors for Fusarium oxysporum infection in Arabidopsis thaliana. Mutants of MED18 and MED20 display down-regulation of genes associated with jasmonate signaling and biosynthesis while up-regulation of salicylic acid associated pathogenesis related genes and reactive oxygen producing and scavenging genes. We propose that MED18 and MED20 form a sub-domain within Mediator that controls the balance of salicylic acid and jasmonate associated defense pathways

    The resistance of <i>med18</i> is mediated by the roots.

    No full text
    <p>Reciprocal grafts made between the WT (Col-0) and <i>med18</i> seedlings revealed that roots containing the <i>med18</i> root genotype were highly resistant to infection, whereas <i>med18/</i>WT or WT/WT self-grafts were highly susceptible. (A) shows the average percentage of leaf chlorosis from eighteen plants per graft combination. Error bars represent standard error. (B) shows typical disease symptoms at 12 days after infection. *** represents significance (p<0.001) using Student’s T-test of each mutant compared to the WT/WT self-graft.</p

    Real time qRT-PCR data of SA-associated genes in WT, <i>med18</i> and <i>med20</i> roots and leaves.

    No full text
    <p>(A, C, E) <i>PR1</i>, <i>PR2</i> and <i>PR5</i> expression in roots of WT, <i>med18</i> and <i>med20</i> with and without <i>F</i>. <i>oxysporum</i> infection. (B, D, F) <i>PR1</i>, <i>PR2</i> and <i>PR5</i> expression in leaves of WT, <i>med18</i> and <i>med20</i> in response to 24 hours of mock or SA treatment. Results were obtained from three independent biological replicates of twenty plants per replicate. (a & b) indicates <i>p</i>-value < 0.05 using a one-way ANOVA, least significant difference test. Error bars represent standard deviation of the biological replicates.</p

    <i>MED18</i> and <i>MED20</i> co-regulate a similar subset of genes.

    No full text
    <p>(A) Venn diagram of the genes differentially expressed between WT and <i>med18</i> or WT and <i>med20</i>. (B) Heat map of the 1105 co-regulated genes. Heat map displays the Log2 fold change of <i>med18</i> or <i>med20</i> compared to the WT, with red representing higher and green representing lower expression in the Mediator mutants, respectively. Scale bar shows the colour change according to the Log2 fold change.</p
    corecore