458 research outputs found

    Full radius linear and nonlinear gyrokinetic simulations for tokamaks and stellarators: zonal flows, applied E x B flows, trapped electrons and finite beta

    Get PDF
    The aim of this paper is to report on recent advances made in global gyrokinetic simulations of ion temperature gradient (ITG) modes and other microinstabilities. The nonlinear development and saturation of ITG modes and the role of E x B zonal flows are studied with a global nonlinear deltaf formulation that retains parallel nonlinearity and thus allows for a check of the energy conservation property as a means of verifying the quality of the numerical simulation. Due to an optimized loading technique, the conservation property is satisfied with an unprecedented quality well into the nonlinear stage. The zonal component of the perturbation evolves to a quasi-steady state with regions of ITG suppression, strongly reduced radial energy flux and steepened effective temperature profiles alternating with regions of higher ITG mode amplitudes, larger radial energy flux and flattened effective temperature profiles. A semi-Lagrangian approach free of statistical noise is proposed as an alternative to the nonlinear deltaf formulation. An ASDEX-Upgrade experiment with an internal transport barrier is analysed with a global gyrokinetic code that includes trapped electron dynamics. The weakly destabilizing effect of trapped electron dynamics on ITG modes in an axisymmetric bumpy configuration modelling W7-X is shown in global linear simulations that retain the full electron dynamics. Finite beta effects on microinstabilities are investigated with a linear global spectral electromagnetic gyrokinetic formulation. The radial global structure of electromagnetic modes shows a resonant behaviour with rational q values

    Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>to investigate the factors affecting survival and toxicity in patients treated with stereotactic radiosurgery (SRS), with special attention to volumes of brain receiving a specific dose (V10 - V16 Gy) as predictors for brain radionecrosis.</p> <p>Patients and Methods</p> <p>Two hundred six consecutive patients with 310 cerebral metastases less than 3.5 cm were treated with SRS as primary treatment and followed prospectively at University of Rome La Sapienza Sant'Andrea Hospital. Overall survival, brain control, and local control were estimated using the Kaplan-Meier method calculated from the time of SRS. Univariate and multivariate analysis using a Cox proportional hazards regression model were performed to determine the predictive value of prognostic factors for treatment outcome and SRS-related complications.</p> <p>Results</p> <p>Median overall survival and brain control were 14.1 months and 10 months, respectively. The 1-year and 2-year survival rates were 58% and 24%, and respective brain control were 43% and 22%. Sixteen patients recurred locally after SRS, with 1-year and 2-year local control rates of 92% and 84%, respectively. On multivariate analysis, stable extracranial disease and KPS >70 were associated with the most significant survival benefit. Neurological complications were recorded in 27 (13%) patients. Severe neurological complications (RTOG Grade 3 and 4) occurred in 5.8% of patients. Brain radionecrosis occurred in 24% of treated lesions, being symptomatic in 10% and asymptomatic in 14%. On multivariate analysis, V10 through V16 Gy were independent risk factors for radionecrosis, with V10 Gy and V12 Gy being the most predictive (p = 0.0001). For V10 Gy >12.6 cm<sup>3 </sup>and V12 Gy >10.9 cm<sup>3 </sup>the risk of radionecrosis was 47%.</p> <p>Conclusions</p> <p>SRS alone represents a feasible option as initial treatment for patients with brain metastases, however a significant subset of patients may develop neurological complications. Lesions with V12 Gy >8.5 cm<sup>3 </sup>carries a risk of radionecrosis >10% and should be considered for hypofractionated stereotactic radiotherapy especially when located in/near eloquent areas.</p

    Polyandry Is a Common Event in Wild Populations of the Tsetse Fly Glossina fuscipes fuscipes and May Impact Population Reduction Measures

    Get PDF
    Glossina fuscipes fuscipes is the most common tsetse species in Uganda where it is responsible for transmitting Trypanosoma brucei rhodensiense and Trypanosoma brucei gambiense parasites causing sleeping sickness in humans in addition to related trypanosomes that cause Nagana in cattle. An understanding of the reproductive biology of this vector is essential for the application of sustainable control/eradication methods such as Sterile Insect Technique (SIT). We have analysed the number of times a female mates in the wild as this aspect of the reproductive behaviour may affect the stability and size of populations. We provide evidence that remating is a common event in the wild and females store sperm from multiple males, which may potentially be used for insemination. In vector eradication programmes, re-infestation of cleared areas and/or in cases of residual populations, the occurrence of remating may unfortunately enhance the reproductive potential of the re-invading propagules. We suggest that population age structure may influence remating frequency. Considering the seasonal demographic changes that this fly undergoes during the dry and wet seasons, control programmes based on SIT should release large numbers of sterile males, even in residual surviving target populations, in the dry season

    The European Integrated Tokamak Modelling Effort:Achievements and First Physics Results

    Get PDF
    This article compares both new and commonly used boundary conditions for generating pressure-driven water flows through carbon nanotubes in molecular dynamics simulations. Three systems are considered: (1) a finite carbon nanotube membrane with streamwise periodicity and ‘gravity’-type Gaussian forcing, (2) a non-periodic finite carbon nanotube membrane with reservoir pressure control, and (3) an infinite carbon nanotube with periodicity and ‘gravity’-type uniform forcing. Comparison between these focuses on the flow behaviour, in particular the mass flow rate and pressure gradient along the carbon nanotube, as well as the radial distribution of water density inside the carbon nanotube. Similar flow behaviour is observed in both membrane systems, with the level of user input required for such simulations found to be largely dependent on the state controllers selected for use in the reservoirs. While System 1 is simple to implement in common molecular dynamics codes, System 2 is more complicated, and the selection of control parameters is less straightforward. A large pressure difference is required between the water reservoirs in these systems to compensate for large pressure losses sustained at the entrance and exit of the nanotube. Despite a simple set-up and a dramatic increase in computational efficiency, the infinite length carbon nanotube in System 3 does not account for these significant inlet and outlet effects, meaning that a much smaller pressure gradient is required to achieve a specified mass flow rate. The infinite tube set-up also restricts natural flow development along the carbon nanotube due to the explicit control of the fluid. Observation of radial density profiles suggests that this results in over-constraint of the water molecules in the tube

    Plasma physics and control studies planned in JT-60SA for ITER and DEMO operations and risk mitigation

    Get PDF
    | openaire: EC/H2020/633053/EU//EUROfusionA large superconducting machine, JT-60SA has been constructed to provide major contributions to the ITER program and DEMO design. For the success of the ITER project and fusion reactor, understanding and development of plasma controllability in ITER and DEMO relevant higher beta regimes are essential. JT-60SA has focused the program on the plasma controllability for scenario development and risk mitigation in ITER as well as on investigating DEMO relevant regimes. This paper summarizes the high research priorities and strategy for the JT-60SA project. Recent works on simulation studies to prepare the plasma physics and control experiments are presented, such as plasma breakdown and equilibrium controls, hybrid and steady-state scenario development, and risk mitigation techniques. Contributions of JT-60SA to ITER and DEMO have been clarified through those studies.Peer reviewe

    Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points

    Full text link
    This work addresses the question of the relation between strike-point splitting and magnetic stochasticity at the edge of a poloidally diverted tokamak in the presence of externally imposed magnetic perturbations. More specifically, ad-hoc helical current sheets are introduced in order to mimic a hypothetical screening of the external resonant magnetic perturbations by the plasma. These current sheets, which suppress magnetic islands, are found to reduce the amount of splitting expected at the target, which suggests that screening effects should be observable experimentally. Multiple screening current sheets reinforce each other, i.e. less current relative to the case of only one current sheet is required to screen the perturbation.Comment: Accepted in the Proceedings of the 19th International Conference on Plasma Surface Interactions, to be published in Journal of Nuclear Materials. Version 2: minor formatting and text improvements, more results mentioned in the conclusion and abstrac

    Overview of the TCV tokamak experimental programme

    Get PDF
    The tokamak a configuration variable (TCV) continues to leverage its unique shaping capabilities, flexible heating systems and modern control system to address critical issues in preparation for ITER and a fusion power plant. For the 2019-20 campaign its configurational flexibility has been enhanced with the installation of removable divertor gas baffles, its diagnostic capabilities with an extensive set of upgrades and its heating systems with new dual frequency gyrotrons. The gas baffles reduce coupling between the divertor and the main chamber and allow for detailed investigations on the role of fuelling in general and, together with upgraded boundary diagnostics, test divertor and edge models in particular. The increased heating capabilities broaden the operational regime to include T (e)/T (i) similar to 1 and have stimulated refocussing studies from L-mode to H-mode across a range of research topics. ITER baseline parameters were reached in type-I ELMy H-modes and alternative regimes with \u27small\u27 (or no) ELMs explored. Most prominently, negative triangularity was investigated in detail and confirmed as an attractive scenario with H-mode level core confinement but an L-mode edge. Emphasis was also placed on control, where an increased number of observers, actuators and control solutions became available and are now integrated into a generic control framework as will be needed in future devices. The quantity and quality of results of the 2019-20 TCV campaign are a testament to its successful integration within the European research effort alongside a vibrant domestic programme and international collaborations

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    The Plasma Membrane Calcium ATPases and Their Role as Major New Players in Human Disease.

    Get PDF
    The Ca2+ extrusion function of the four mammalian isoforms of the plasma membrane calcium ATPases (PMCAs) is well established. There is also ever-increasing detail known of their roles in global and local Ca2+ homeostasis and intracellular Ca2+ signaling in a wide variety of cell types and tissues. It is becoming clear that the spatiotemporal patterns of expression of the PMCAs and the fact that their abundances and relative expression levels vary from cell type to cell type both reflect and impact on their specific functions in these cells. Over recent years it has become increasingly apparent that these genes have potentially significant roles in human health and disease, with PMCAs1-4 being associated with cardiovascular diseases, deafness, autism, ataxia, adenoma, and malarial resistance. This review will bring together evidence of the variety of tissue-specific functions of PMCAs and will highlight the roles these genes play in regulating normal physiological functions and the considerable impact the genes have on human disease
    corecore