102 research outputs found

    Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata

    Get PDF
    Many Microbe Microarrays Database (M3D) is designed to facilitate the analysis and visualization of expression data in compendia compiled from multiple laboratories. M3D contains over a thousand Affymetrix microarrays for Escherichia coli, Saccharomyces cerevisiae and Shewanella oneidensis. The expression data is uniformly normalized to make the data generated by different laboratories and researchers more comparable. To facilitate computational analyses, M3D provides raw data (CEL file) and normalized data downloads of each compendium. In addition, web-based construction, visualization and download of custom datasets are provided to facilitate efficient interrogation of the compendium for more focused analyses. The experimental condition metadata in M3D is human curated with each chemical and growth attribute stored as a structured and computable set of experimental features with consistent naming conventions and units. All versions of the normalized compendia constructed for each species are maintained and accessible in perpetuity to facilitate the future interpretation and comparison of results published on M3D data. M3D is accessible at http://m3d.bu.edu/

    Many Microbe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental metadata

    Get PDF
    Many Microbe Microarrays Database (M3D) is designed to facilitate the analysis and visualization of expression data in compendia compiled from multiple laboratories. M3D contains over a thousand Affymetrix microarrays for Escherichia coli, Saccharomyces cerevisiae and Shewanella oneidensis. The expression data is uniformly normalized to make the data generated by different laboratories and researchers more comparable. To facilitate computational analyses, M3D provides raw data (CEL file) and normalized data downloads of each compendium. In addition, web-based construction, visualization and download of custom datasets are provided to facilitate efficient interrogation of the compendium for more focused analyses. The experimental condition metadata in M3D is human curated with each chemical and growth attribute stored as a structured and computable set of experimental features with consistent naming conventions and units. All versions of the normalized compendia constructed for each species are maintained and accessible in perpetuity to facilitate the future interpretation and comparison of results published on M3D data. M3D is accessible at http://m3d.bu.edu/

    Fundamental constructs in food parenting practices: a content map to guide future research

    Get PDF
    Although research shows that “food parenting practices” can impact children’s diet and eating habits, current understanding of the impact of specific practices has been limited by inconsistencies in terminology and definitions. This article represents a critical appraisal of food parenting practices, including clear terminology and definitions, by a working group of content experts. The result of this effort was the development of a content map for future research that presents 3 overarching, higher-order food parenting constructs – coercive control, structure, and autonomy support – as well as specific practice subconstructs. Coercive control includes restriction, pressure to eat, threats and bribes, and using food to control negative emotions. Structure includes rules and limits, limited/guided choices, monitoring, meal- and snacktime routines, modeling, food availability and accessibility, food preparation, and unstructured practices. Autonomy support includes nutrition education, child involvement, encouragement, praise, reasoning, and negotiation. Literature on each construct is reviewed, and directions for future research are offered. Clear terminology and definitions should facilitate cross-study comparisons and minimize conflicting findings resulting from previous discrepancies in construct operationalization

    Inferring the role of transcription factors in regulatory networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expression profiles obtained from multiple perturbation experiments are increasingly used to reconstruct transcriptional regulatory networks, from well studied, simple organisms up to higher eukaryotes. Admittedly, a key ingredient in developing a reconstruction method is its ability to integrate heterogeneous sources of information, as well as to comply with practical observability issues: measurements can be scarce or noisy. In this work, we show how to combine a network of genetic regulations with a set of expression profiles, in order to infer the functional effect of the regulations, as inducer or repressor. Our approach is based on a consistency rule between a network and the signs of variation given by expression arrays.</p> <p>Results</p> <p>We evaluate our approach in several settings of increasing complexity. First, we generate artificial expression data on a transcriptional network of <it>E. coli </it>extracted from the literature (1529 nodes and 3802 edges), and we estimate that 30% of the regulations can be annotated with about 30 profiles. We additionally prove that at most 40.8% of the network can be inferred using our approach. Second, we use this network in order to validate the predictions obtained with a compendium of real expression profiles. We describe a filtering algorithm that generates particularly reliable predictions. Finally, we apply our inference approach to <it>S. cerevisiae </it>transcriptional network (2419 nodes and 4344 interactions), by combining ChIP-chip data and 15 expression profiles. We are able to detect and isolate inconsistencies between the expression profiles and a significant portion of the model (15% of all the interactions). In addition, we report predictions for 14.5% of all interactions.</p> <p>Conclusion</p> <p>Our approach does not require accurate expression levels nor times series. Nevertheless, we show on both data, real and artificial, that a relatively small number of perturbation experiments are enough to determine a significant portion of regulatory effects. This is a key practical asset compared to statistical methods for network reconstruction. We demonstrate that our approach is able to provide accurate predictions, even when the network is incomplete and the data is noisy.</p

    Threatened reef corals of the world

    Get PDF
    10.1371/journal.pone.0034459PLoS ONE73

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest

    Get PDF
    Background Halyomorpha halys (Stål), the brown marmorated stink bug, is a highly invasive insect species due in part to its exceptionally high levels of polyphagy. This species is also a nuisance due to overwintering in human-made structures. It has caused significant agricultural losses in recent years along the Atlantic seaboard of North America and in continental Europe. Genomic resources will assist with determining the molecular basis for this species’ feeding and habitat traits, defining potential targets for pest management strategies. Results Analysis of the 1.15-Gb draft genome assembly has identified a wide variety of genetic elements underpinning the biological characteristics of this formidable pest species, encompassing the roles of sensory functions, digestion, immunity, detoxification and development, all of which likely support H. halys’ capacity for invasiveness. Many of the genes identified herein have potential for biomolecular pesticide applications. Conclusions Availability of the H. halys genome sequence will be useful for the development of environmentally friendly biomolecular pesticides to be applied in concert with more traditional, synthetic chemical-based controls
    corecore