20 research outputs found

    Rational ligand design for metal ion recognition. Synthesis of a N-benzylated N2S3-donor macrocycle for enhanced silver(I) discrimination

    Get PDF
    Four previously documented ligand design strategies for achieving Ag(I) discrimination have been applied to the design of a new N-benzylated N2S3-donor macrocycle; the latter shows high selectivity for Ag(I) over Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) in log K and bulk membrane transport studies

    The effect of contaminants on the application of polyamine functionalised ion exchange resins for uranium extraction from sulfate based mining process waters

    Get PDF
    Three in-house produced polyamine functionalised ion exchange resins and Purolite S985 (a commercial ion exchange resin) have been assessed for their ability to extract UO22+ from a variety of aqueous matrices applicable to current and potential future uranium mining processes. The uptake of common contaminant species in uranium processing liquors at variable acid concentrations has been assessed, with Al3+ and MoO42− showing the most extraction, with AsO43−, Eu3+ and Fe3+ showing extractions >10% at low [H+]. Extraction of MoO42−, AsO43−, Eu3+ and Fe3+ was seen to decrease with increasing [H+]. The impact of increasing [Cl−] on UO22+ and Fe3+ extraction has been determined. Fe3+ showed low extractions by all resins, with no dependence on [Cl−]. In contrast, increasing suppression of UO22+ uptake was seen with increasing [Cl−] up to 80 g L−1, with extraction remaining constant beyond this [Cl−]. At high [Cl−] (>50 g L−1) Purolite S985 was seen to remove UO22+ from solution more effectively than all synthesised polyamine resins. The presence of Fe3+ in solution was seen to suppress UO22+ uptake by around 10% when [Fe3+]/[UO22+] increased from 0 to 2. Fe3+ extraction by all studied resins was promoted by the presence of UO22+ in solution. This was most prevalent with Purolite S985, with an extraction of 30% for [Fe3+]/[UO22+] = 2 by Purolite S985. All resins were tested using a process water from a uranium mine and have shown an ability to selectively extract UO22+ from such solutions, with the best synthetic resin recovering 15.7% more uranium than Purolite S985

    Polyamine functionalised ion exchange resins: Synthesis, characterisation and uranyl uptake

    Get PDF
    A series of linear polyamine functionalised weak base anion exchange resins have been synthesised using the Merrifield resin and characterised using infra-red spectroscopy, thermogravimetry, elemental analysis and solid state 13 C nuclear magnetic resonance spectroscopy. Uptake behaviour towards uranium (as uranyl) from sulfuric acid media has been assessed as a function of pH and sulfate concentration, with comparison to a commercially available weak base anion exchange resin, Purolite S985. Synthetic polyamine resins were seen to outperform the commercial resin at industrially relevant uranyl concentrations, with a trend of increased uptake being seen with increasing polyamine chain length. Uranium loading isotherm studies have been performed and fit with the Langmuir and Dubinin-Radushkevich isotherm models, with a maximum loading capacity observed being 269.50 mg g −1 for the longest polyamine chain studied. Extended X-ray absorption fine structure experiments have been used to determine uranium coordination environment on the resin surface, showing a [UO 2 (SO 4 ) 3 ] 4− species. This coordination knowledge was employed to develop an extraction mechanism and derive an isotherm model based on the law of mass action

    Metal-ion recognition—selective bulk membrane transport of silver(I) using thioether donor macrocycles as ionophores, and X-ray structure of the silver complex of an S4-donor ring

    No full text
    Competitive metal-ion transport experiments, each involving transport from an aqueous source phase containing equimolar concentrations of cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), silver(i), and lead(II) across a chloroform membrane phase to an aqueous receiving phase have been carried out. The membrane phase incorporated an ionophore chosen from a series of thioether-containing macrocycles. For those systems that displayed transport behaviour, sole selectivity for silver(I) was observed under the conditions employed. The effect of variation in the macrocyclic sulfur atom donor set and the presence of hydrophilic ring substituents on transport efficiency is presented. An X-ray structure of the 1 : 1 silver(I) nitrate complex of a 16-membered, S4-donor macrocycle shows the presence of four crystallographically independent macrocycles displaying conformational isomerism. Each silver(I) has an approximate tetrahedral geometry, being bound to three sulfur atoms from three different macrocycles and to one nitrato ligand to yield a three-dimensional network
    corecore