14 research outputs found

    Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells

    Get PDF
    BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naive cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGF beta/SMAD (transforming growth factor-beta/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naive cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib sensitivity, reducing or even inhibiting the acquired chemoresistance in melanoma patients.Fapesp-grant number 2012/04194-1, 2013/05172-4, 2014/24400-0 and 2015/10821-7, CNPq-grant number 150447/2013-2 and 471512/2013-3 and PRODOC-grant no 3193-32/2010. Work in the lab of KS Smalley was supported by the National Institutes of Health grants R01 CA161107, R21 CA198550, and Skin SPORE grant P50 CA168536info:eu-repo/semantics/publishedVersio

    DM-1, sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate: a curcumin analog with a synergic effect in combination with paclitaxel in breast cancer treatment

    No full text
    This paper describes a new method for the preparation of sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate, DM-1, and 3-oxo-penta-1,4-dienyl-bis (2-methoxy-phenolate), DM-2. The aim of this work was to evaluate the antitumor effects of DM-1 in adjuvant chemotherapy for breast cancer treatment. Mice bearing mammary adenocarcinomas (Ehrlich ascites tumors) were treated with paclitaxel alone, DM-1 alone, and paclitaxel + DM-1. Tumor samples were used to perform cytological analysis by the Papanicolaou method and apoptosis analysis by annexin V and phosphorylated caspase 3. The paclitaxel + DM-1 group had decreased tumor areas and tumor volumes, and the frequency of metastasis was significantly reduced. This caused a decrease in cachexia, which is usually caused by the tumor. Furthermore, treatment with paclitaxel + DM-1 and DM-1 alone increased the occurrence of apoptosis up to 40% in tumor cells, which is 35% more than in the group treated with paclitaxel alone. This cell death was mainly caused through phosphorylated caspase 3 (11% increase in paclitaxel + DM-1 compared to the paclitaxel group), as confirmed by reduced malignancy criteria in the ascitic fluid. DM-1 emerges as a potential treatment for breast cancer and may act as an adjuvant in chemotherapy, enhancing antitumor drug activity with reduced side effects.Sao Paulo Research FoundationSao Paulo Research FoundationFAPESP [2006/59450-1, 2004/11351-0]FAPES

    Basic Red 51, a permitted semi-permanent hair dye, is cytotoxic to human skin cells: Studies in monolayer and 3D skin model using human keratinocytes (HaCaT)

    No full text
    The use of hair dyes is closely associated with the increase of cancer, inflammation and other skin disorders. The recognition that human skin is not an impermeable barrier indicates that there is the possibility of human systemic exposure. The potential carcinogenicity of hair dye ingredients has attracted the attention of toxicologists for many decades, mainly due to the fact that some ingredients belong to the large chemical family of aromatic amines. Herein, we investigated the cytotoxicity of Basic Red 51 (BR51) in immortalized human keratinocytes (HaCaT). BR51 is a temporary hair dye that belongs to the azo group (NN); the cleavage of this bond may result in the release of toxic aromatic amines. The half maximal effective concentration (EC50) in HaCaT cells is 13mug/mL. BR51 induced a significant decrease on expression of p21 in a dose dependent manner. p53 was not affected, whereas BR51 decreased procaspase 8 and cleaved procaspase 9. These results proved that caspase 3 is fully involved in BR51-induced apoptosis. The dye was also able to stop this cell cycle on G2 in sub-toxic doses. Moreover, we reconstructed a 3D artificial epidermis using HaCaT cells; using this model, we observed that BR51 induced cell injury and cells were undergoing apoptosis, considering the fragmented nuclei. Subsequently, BR51 induced reactive oxygen species (ROS) leading to an increase on the levels of 8-oxo-dG. In conclusion, we provide strong evidence that consumer and/or professional exposure to BR51 poses risk to human health

    New antitumoral agents I: In vitro anticancer activity and in vivo acute toxicity of synthetic 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one and derivatives

    No full text
    This paper describes a new method for the preparation of 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadien-3-one 1 and its derivatives 2-5. This set of synthetic compounds exhibited high antitumoral activities regarding in vitro screening against several human tumor cell lines as lung carcinoma NCI-460, melanoma UACC-62, breast MCF-7, colon HT-29, renal 786-O, ovarian OVCAR-03 and ovarian expressing the resistance phenotype for adriamycin NCI-ADR/ RES, prostate PC-3, and leukemia K-562. Compounds were also tested against murine tumor cell line B16F10 melanoma and lymphocytic leukemia L1210 as well as to their effect toward normal macrophages. Specific activity against colon cancer cells HT-29 was observed for all tested compounds and suggests further studies with models of colon cancer. Compounds 1, 2, and 4 showed significant cytotoxic activity with IC(50) values <= 2.3 mu M for all human cancer cell lines. Intraperitoneal acute administration of compound 1 and 2 showed very low toxicity rate. (C) 2010 Elsevier Ltd. All rights reserved.Universidade Bandeirante de Sao Paulo, UNIBANState of Sao Paulo Research Foundation, FAPESP[2004/11351-0]State of Sao Paulo Research Foundation, FAPESP[2006/00116-5]National Council for Scientific and Technological Development CNP
    corecore