135 research outputs found

    A mechanism for the inhibition of DNA-PK-mediated DNA sensing by a virus

    Get PDF
    The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses

    Mucin granule-associated proteins in human bronchial epithelial cells: the airway goblet cell "granulome"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excess mucus in the airways leads to obstruction in diseases such as chronic bronchitis, asthma, and cystic fibrosis. Mucins, the highly glycosolated protein components of mucus, are stored in membrane-bound granules housed in the cytoplasm of airway epithelial "goblet" cells until they are secreted into the airway lumen via an exocytotic process. Precise mechanism(s) of mucin secretion, including the specific proteins involved in the process, have yet to be elucidated. Previously, we have shown that the Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) protein regulates mucin secretion by orchestrating translocation of mucin granules from the cytosol to the plasma membrane, where the granules dock, fuse and release their contents into the airway lumen. Associated with MARCKS in this process are chaperone (Heat Shock Protein 70 [HSP70], Cysteine string protein [CSP]) and cytoskeletal (actin, myosin) proteins. However, additional granule-associated proteins that may be involved in secretion have not yet been elucidated.</p> <p>Methods</p> <p>Here, we isolated mucin granules and granule membranes from primary cultures of well differentiated human bronchial epithelial cells utilizing a novel technique of immuno-isolation, based on the presence of the calcium activated chloride channel hCLCA1 (the human ortholog of murine Gob-5) on the granule membranes, and verified via Western blotting and co-immunoprecipitation that MARCKS, HSP70, CSP and hCLCA1 were present on the granule membranes and associated with each other. We then subjected the isolated granules/membranes to liquid chromatography mass spectrometry (LC-MS/MS) to identify other granule associated proteins.</p> <p>Results</p> <p>A number of additional cytoskeletal (e.g. Myosin Vc) and regulatory proteins (e.g. Protein phosphatase 4) associated with the granules and could play a role in secretion were discovered. This is the first description of the airway goblet cell "granulome."</p

    The Endogenous Th17 Response in NO<inf>2</inf>-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer

    Get PDF
    Severe, glucocorticoid-resistant asthma comprises 5-7% of patients with asthma. IL-17 is a biomarker of severe asthma, and the adoptive transfer of Th17 cells in mice is sufficient to induce glucocorticoid-resistant allergic airway disease. Nitrogen dioxide (NO2) is an environmental toxin that correlates with asthma severity, exacerbation, and risk of adverse outcomes. Mice that are allergically sensitized to the antigen ovalbumin by exposure to NO2 exhibit a mixed Th2/Th17 adaptive immune response and eosinophil and neutrophil recruitment to the airway following antigen challenge, a phenotype reminiscent of severe clinical asthma. Because IL-1 receptor (IL-1R) signaling is critical in the generation of the Th17 response in vivo, we hypothesized that the IL-1R/Th17 axis contributes to pulmonary inflammation and airway hyperresponsiveness (AHR) in NO2-promoted allergic airway disease and manifests in glucocorticoid-resistant cytokine production. IL-17A neutralization at the time of antigen challenge or genetic deficiency in IL-1R resulted in decreased neutrophil recruitment to the airway following antigen challenge but did not protect against the development of AHR. Instead, IL-1R-/- mice developed exacerbated AHR compared to WT mice. Lung cells from NO2-allergically inflamed mice that were treated in vitro with dexamethasone (Dex) during antigen restimulation exhibited reduced Th17 cytokine production, whereas Th17 cytokine production by lung cells from recipient mice of in vitro Th17-polarized OTII T-cells was resistant to Dex. These results demonstrate that the IL-1R/Th17 axis does not contribute to AHR development in NO2-promoted allergic airway disease, that Th17 adoptive transfer does not necessarily reflect an endogenously-generated Th17 response, and that functions of Th17 responses are contingent on the experimental conditions in which they are generated. © 2013 Martin et al

    Inhibitory effects of inhaled complex traditional Chinese medicine on early and late asthmatic responses induced by ovalbumin in sensitized guinea pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many formulae of traditional Chinese medicines (TCMs) have been used for antiasthma treatment dating back many centuries. There is evidence to suggest that TCMs are effective as a cure for this allergenic disease administered via gastric tubes in animal studies; however, their efficacy, safety and side effects as an asthmatic therapy are still unclear.</p> <p>Methods</p> <p>In this study, guinea pigs sensitized with ovalbumin (OVA) were used as an animal model for asthma challenge, and the sensitization of animals by bronchial reactivity to methacholine (Mch) and the IgE concentration in the serum after OVA challenge were estimated. Complex traditional Chinese herbs (CTCM) were administered to the animals by nebulization, and the leukocytes were evaluated from bronchoalveolar lavage fluid (BALF).</p> <p>Results</p> <p>The results showed that inhalation of CTCM could abolish the increased lung resistance (13-fold increase) induced by challenge with OVA in the early asthmatic response (EAR), reducing to as low as baseline (1-fold). Moreover, our results indicated higher IgE levels (range, 78-83 ng/ml) in the serum of sensitized guinea pigs than in the unsensitized controls (0.9 ± 0.256 ng/ml). In addition, increased total leukocytes and higher levels of eosinophils and neutrophils were seen 6 hours after challenge, and the increased inflammatory cells were reduced by treatment with CTCM inhalation. The interleukin-5 (IL-5) level in BALF was also reduced by CTCM.</p> <p>Conclusion</p> <p>Our findings indicate a novel method of administering traditional Chinese medicines for asthma treatment in an animal model that may be more effective than traditional methods.</p

    Multifunctional Role of Bcl-2 in Malignant Transformation and Tumorigenesis of Cr(VI)-Transformed Lung Cells

    Get PDF
    B-cell lymphoma-2 (Bcl-2) is an antiapoptotic protein known to be important in the regulation of apoptosis in various cell types. However, its role in malignant transformation and tumorigenesis of human lung cells is not well understood. We previously reported that chronic exposure of human lung epithelial cells to the carcinogenic hexavalent chromium Cr(VI) caused malignant transformation and Bcl-2 upregulation; however, the role of Bcl-2 in the transformation is unclear. Using a gene silencing approach, we showed that Bcl-2 plays an important role in the malignant properties of Cr(VI)-transformed cells. Downregulation of Bcl-2 inhibited the invasive and proliferative properties of the cells as well as their colony forming and angiogenic activities, which are upregulated in the transformed cells as compared to control cells. Furthermore, animal studies showed the inhibitory effect of Bcl-2 knockdown on the tumorigenesis of Cr(VI)-transformed cells. The role of Bcl-2 in malignant transformation and tumorigenesis was confirmed by gene silencing experiments using human lung carcinoma NCI-H460 cells. These cells exhibited aggressive malignant phenotypes similar to those of Cr(VI)-transformed cells. Knockdown of Bcl-2 in the H460 cells inhibited malignant and tumorigenic properties of the cells, indicating the general role of Bcl-2 in human lung tumorigenesis. Ingenuity Pathways Analysis (IPA) revealed potential effectors of Bcl-2 in tumorigenesis regulation. Additionally, using IPA together with ectopic expression of p53, we show p53 as an upstream regulator of Bcl-2 in Cr(VI)-transformed cells. Together, our results indicate the novel and multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of human lung epithelial cells chronically exposed to Cr(VI)

    Staphylococcus aureus enterotoxins induce IL-8 secretion by human nasal epithelial cells

    Get PDF
    BACKGROUND: Staphylococcus aureus produces a set of proteins which act both as superantigens and toxins. Although their mode of action as superantigens is well understood, little is known about their effects on airway epithelial cells. METHODS: To investigate this problem, primary nasal epithelial cells derived from normal and asthmatic subjects were stimulated with staphylococcal enterotoxin A and B (SEA and SEB) and secreted (supernatants) and cell-associated (cell lysates) IL-8, TNF-α, RANTES and eotaxin were determined by specific ELISAs. RESULTS: Non-toxic concentrations of SEA and SEB (0.01 μg/ml and 1.0 μg/ml) induced IL-8 secretion after 24 h of culture. Pre-treatment of the cells with IFN-γ (50 IU/ml) resulted in a further increase of IL-8 secretion. In cells from healthy donors pretreated with IFN-γ, SEA at 1.0 μg/ml induced release of 1009 pg/ml IL-8 (733.0–1216 pg/ml, median (range)) while in cells from asthmatic donors the same treatment induced significantly higher IL-8 secretion – 1550 pg/ml (1168.0–2000.0 pg/ml p = 0.04). Normal cells pre-treated with IFN-γ and then cultured with SEB at 1.0 μg/ml released 904.6 pg/ml IL-8 (666.5–1169.0 pg/ml). Cells from asthmatics treated in the same way produced significantly higher amounts of IL-8 – 1665.0 pg/ml (1168.0–2000.0 pg/ml, p = 0.01). Blocking antibodies to MHC class II molecules added to cultures stimulated with SEA and SEB, reduced IL-8 secretion by about 40% in IFN-γ unstimulated cultures and 75% in IFN-γ stimulated cultures. No secretion of TNF-α, RANTES and eotaxin was noted. CONCLUSION: Staphylococcal enterotoxins may have a role in the pathogenesis of asthma

    Freeze-Drying of Mononuclear Cells Derived from Umbilical Cord Blood Followed by Colony Formation

    Get PDF
    BACKGROUND: We recently showed that freeze-dried cells stored for 3 years at room temperature can direct embryonic development following cloning. However, viability, as evaluated by membrane integrity of the cells after freeze-drying, was very low; and it was mainly the DNA integrity that was preserved. In the present study, we improved the cells' viability and functionality after freeze-drying. METHODOLOGY/PRINCIPAL FINDINGS: We optimized the conditions of directional freezing, i.e. interface velocity and cell concentration, and we added the antioxidant EGCG to the freezing solution. The study was performed on mononuclear cells (MNCs) derived from human umbilical cord blood. After freeze-drying, we tested the viability, number of CD34(+)-presenting cells and ability of the rehydrated hematopoietic stem cells to differentiate into different blood cells in culture. The viability of the MNCs after freeze-drying and rehydration with pure water was 88%-91%. The total number of CD34(+)-presenting cells and the number of colonies did not change significantly when evaluated before freezing, after freeze-thawing, and after freeze-drying (5.4 x 10(4)+/-4.7, 3.49 x 10(4)+/-6 and 6.31 x 10(4)+/-12.27 cells, respectively, and 31+/-25.15, 47+/-45.8 and 23.44+/-13.3 colonies, respectively). CONCLUSIONS: This is the first report of nucleated cells which have been dried and then rehydrated with double-distilled water remaining viable, and of hematopoietic stem cells retaining their ability to differentiate into different blood cells

    Multidisciplinary investigations of the diets of two post-medieval populations from London using stable isotopes and microdebris analysis

    Get PDF
    This paper presents the first multi-tissue study of diet in post-medieval London using both the stable light isotope analysis of carbon and nitrogen and analysis of microdebris in dental calculus. Dietary intake was explored over short and long timescales. Bulk bone collagen was analysed from humans from the Queen’s Chapel of the Savoy (QCS) (n = 66) and the St Barnabas/St Mary Abbots (SB) (n = 25). Incremental dentine analysis was performed on the second molar of individual QCS1123 to explore childhood dietary intake. Bulk hair samples (n = 4) were sampled from adults from QCS, and dental calculus was analysed from four other individuals using microscopy. In addition, bone collagen from a total of 46 animals from QCS (n = 11) and the additional site of Prescot Street (n = 35) was analysed, providing the first animal dietary baseline for post-medieval London. Overall, isotopic results suggest a largely C3-based terrestrial diet for both populations, with the exception of QCS1123 who exhibited values consistent with the consumption of C4 food sources throughout childhood and adulthood. The differences exhibited in δ15Ncoll across both populations likely reflect variations in diet due to social class and occupation, with individuals from SB likely representing wealthier individuals consuming larger quantities of animal and marine fish protein. Microdebris analysis results were limited but indicate the consumption of domestic cereals. This paper demonstrates the utility of a multidisciplinary approach to investigate diet across long and short timescales to further our understanding of variations in social status and mobility

    Analysing algorithms and data sources for the tissue-specific reconstruction of liver healthy and cancer cells

    Get PDF
    Genome-Scale Metabolic Models (GSMMs), mathematical representations of the cell metabolism in different organisms including humans, are resourceful tools to simulate metabolic phenotypes and understand associated diseases, such as obesity, diabetes and cancer. In the last years, different algorithms have been developed to generate tissue-specific metabolic models that simulate different phenotypes for distinct cell types. Hepatocyte cells are one of the main sites of metabolic conversions, mainly due to their diverse physiological functions. Most of the liver's tissue is formed by hepatocytes, being one of the largest and most important organs regarding its biological functions. Hepatocellular carcinoma is, also, one of the most important human cancers with high mortality rates. In this study, we will analyze four different algorithms (MBA, mCADRE, tINIT and FASTCORE) for tissue-specific model reconstruction, based on a template model and two types of data sources: transcriptomics and proteomics. These methods will be applied to the reconstruction of metabolic models for hepatocyte cells and HepG2 cancer cell line. The models will be analyzed and compared under different perspectives, emphasizing their functional analysis considering a set of metabolic liver tasks. The results show that there is no ``ideal'' algorithm. However, with the current analysis, we were able to retrieve knowledge about the metabolism of the liver.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE01-0145-FEDER-000004) and Search-ON2: Revitalization of HPC infrastructure of UMinho, (NORTE-07-0162-FEDER-000086), all funded by European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.info:eu-repo/semantics/publishedVersio
    • …
    corecore