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1  Introduction

As one of the most important tools to investigate cell 
metabolism, Genome-Scale Metabolic Models (GSMMs) 
comprise a mathematical formulation of the biochemical 
reactions’ network of a given organism [1]. They are based 
on the assumption of a pseudo-steady state and the use of 
a stoichiometric matrix to be able to perform simulations 
using numerical optimization [2]. In addition, GSMMs can 
simulate phenotypes under different conditions (genetic, 
physicochemical and environmental) that are imported to 
the model in the form of constraints, taken into account 
when the optimization is being performed for the predic-
tion of fluxes [3].

The decrease in the cost of high-throughput omics data 
and the scientific advances in bioinformatics have enabled 
metabolic reconstructions, not only for smaller organisms, 
but also for eukaryotes and even humans. The first meta-
bolic human GSMM was released in 2007, Recon1, with 
a very thorough manual curation allowing to validate 
each single metabolic reaction [4]. This revolutionized 
the development of new algorithms specifically made for 
human models. A small set of modifications on the nor-
mal metabolism may imply serious consequences. Diseases 
such as obesity, diabetes, cancer are some of the exam-
ples [5]. GSMMs provide important tools to study these 
disturbances.

Today, the most extensive human metabolic mod-
els are Recon2 [6] and HMR 2.0 [7]. The Recon2 is the 
result of the merge of other metabolic components pre-
sent in Recon1 together with the information from Edin-
burgh Human Metabolic Network (EHMN) [8], Hepa-
toNet1 [9], a module containing information about acyl 
carnitine and fatty acid oxidation [10], and another model 
with data about the human small intestinal enterocyte 
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[11]. Regarding the HMR 2.0, it also contains integrated 
information from the Recon1, EHMN, HepatoNet1, iHu-
man1512 [12] and iAdipocytes1809 [13], and also infor-
mation from the four major metabolic databases (KEGG 
[14], HumanCyc [15], LIPID MAPS Lipidomics Gateway 
[16] and REACTOME [17]).

Due to the evolution of the omics technologies, several 
types of data can be used in combination with the mod-
els to improve their predictive power [18, 19], to fill gaps 
of knowledge. Although the analysis of fluxes (fluxom-
ics) seems the better approach to complete the models, it 
can only be used to determine a specific set of reactions. 
Metabolomics would also be a good choice, but due to the 
fact that a metabolite takes part of multiple reactions, its 
measurement is not in many cases biologically relevant.

With this in mind, proteomics and transcriptomics data 
make possible the analysis of the current molecular state of 
the organism. Although proteomics is not as advanced as 
transcriptomics, the Human Protein Atlas (HPA) contains 
data obtained by immunostaining experiments associated 
with their subcellular localization [3].

Transcriptomics data (mRNA) can be measured with 
more precision and wider range when compared to pro-
teins, with more automated processes and lower costs asso-
ciated. Although these data are more frequently used, the 
acquisition of knowledge is more difficult due to the fact 
that there are different layers to take into account, like the 
translation, post-translational modifications, mRNA/protein 
degradation or enzyme regulation by activators or inhibi-
tors [20–22].

Metabolic models, when associated with information 
on environmental conditions (e.g., growth medium), can 
provide a reasonable prediction of several metabolic phe-
notypes, such as growth rates, nutrient uptake rates, com-
pound excretion rates or gene essentially [23].

Flux Balance Analysis (FBA) is the most used technique 
to predict the phenotype using a model [24]. Based on the 
assumption of a pseudo-steady state, it has been accepted 
as one of the most robust methods to study the physiol-
ogy of the cell (given a set of constrains to the model). 
This assumption implies that all the internal metabolites 
are “balanced” and the cell has a tendency to optimize a 
defined objective function (the usual one is the maximiza-
tion of the cell growth).

Although these models are simply a mathematical rep-
resentation of a cell, they have proved that their application 
can have an high value for biomedical purposes. Charac-
teristics like its ease of implementation or their predictive 
power have made possible the prediction of which genes 
to manipulate in metabolic engineering (production of 
shikimic acid and putrescine in E. coli) [25], predict drug 
targets (essential metabolites considered critical to the 
Vibrio vulnificus CMCP6) [26], and specific cells linked to 

diseases, for example, hepatocytes from patients who suf-
fered nonalcoholic fatty liver disease [7].

GSMMs were also used to simulate cancer cells’ metab-
olism and address drug target discovery, to study tumor 
suppressors and oxidative stress [12, 27–29]. One study on 
the fumarate hydratase (FH) enzyme (from the TCA cycle) 
with a mutation that led to the loss of its function and had 
diseases associated with it, like renal cancer, and on the 
heme pathway, demonstrated that “wild-type” cells are not 
affected when targeting the cancer cells with a drug to a 
specific target [27].

If we take a deep look into the complex human organ-
ism, we have several types of cells in different proportions 
and each of them with distinct roles in the metabolism. For 
this and other reasons, it is of crucial importance the “crea-
tion” of tissue-specific metabolic models that can lead to 
an improvement of metabolic phenotypes and their related 
diseases. Indeed, the creation of methods for the integra-
tion of omics data for the generation of tissue/cell type-spe-
cific metabolic models is of crucial significance for a better 
understanding of the biochemical and genetic complexity 
of the human metabolism [30]. Establishing several mod-
els that can simulate diverse cell types from human tissues 
may be a good starting point for a better understanding of 
complex diseases [12].

Liver is one of the most crucial human organs regard-
ing the metabolism, being responsible for the removal of 
toxic substances and regulation of the bile, plasma and red 
cells [5]. Two different types of cells comprise the liver, the 
parenchymal and nonparenchymal cells and the most com-
mon diseases associated are hepatitis, hepatocellular car-
cinoma (HCC) and nonalcoholic fatty liver disease (which 
can all be linked to disorders in the metabolism) [31].

HCC affects many humans in the world with half a mil-
lion new cases per year [32]. Given the fact that there is a 
huge amount of data produced by high-throughput technol-
ogies (and the continuous decrease on its costs), the under-
standing of the main dissimilarities between the healthy 
and disease conditions can elucidate the underlying mecha-
nism of the liver cells and their related diseases [33].

To unveil the mechanisms behind the metabolism of the 
liver, several tissue-specific metabolic model reconstruc-
tion algorithms have been utilized for hepatocytes [34, 35] 
and even a manually curated one, the HepanoNet1 [9]. In 
previous work, a systematic analysis of different algorithms 
for the same purpose was conducted by the authors [36].

Here, the objective is to extend the previous work, 
by taking into account the normal hepatocytes and also 
reconstructing a model for the HepG2, a liver cancer cell 
line [37], also increasing the number of algorithms tested 
to consider the most recent ones. For both conditions, we 
will consider different data sources for transcriptomics and 
proteomics. We aim to analyze the models generated for 
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both conditions and compare how the algorithms and data 
sources affect their functional and structural capabilities, 
achieving more knowledge on how different is the metabo-
lism between the studied conditions, highlighting the reac-
tions or pathways affected.

2 � Materials and Methods

2.1 � Models and Data

Recon1 will be used as the GSMM, which comprises 3742 
reactions, 2766 metabolites, 2004 proteins and 1905 genes 
[38]. Proteomics data were retrieved from the Human Pro-
tein Atlas (HPA) [39], which contains information on pro-
tein concentration levels. Here, we used HPA data (version 
14) for the HepG2 cell line derived from a hepatocellular 
carcinoma [37] and hepatocytes from normal liver tissue 
data.

For the transcriptomics data, we used raw expression 
data from 3 different samples of HepG2 cell lines (from 
GSE7307 dataset from Gene Expression Omnibus (GEO)) 
and the information present in the Gene Expression Bar-
code (GEB) [40] for the hepatocytes from normal liver tis-
sue data. The processing of the raw data used was the one 
described in the work of Wang and his colleagues [35].

Based on them, the reaction scores were calculated using 
the gene–protein rules (GPRs) present on the Recon1, 
where the logical value “OR” will be replaced by the maxi-
mum and “AND” for the minimum of gene scores obtained 
by the omics data.

2.2 � Algorithms for Tissue‑Specific Model 
Reconstruction

Given the different algorithms to create tissue-specific 
metabolic models based on a generic human model, we 
briefly explain the four that will be used in this work. The 
pseudo code of all the algorithms described can be viewed 
in Table 1.

2.2.1 � INIT/tINIT

The Integrative Network Interface for Tissues (INIT) 
algorithm maximizes the matches between reaction states 
(active or inactive) and data regarding expression or non-
expression of genes/proteins, returning flux values and a 
tissue-specific model (i.e., a set of reactions from the orig-
inal model considered to exist in the tissue). The method 
solves a Mixed Integer Linear Program (MILP), where 
binary variables represent the presence of each reaction 
from the template model in the resulting model. Although 

the algorithm normally uses proteomic data from HPA, 
transcriptomics can also be given as an input.

In the definition of the objective function, positive 
weights are given to reactions with a higher evidence 
from the input, and negative to the ones who have low or 
no expression. If there is supportive information (usually 
metabolomics) that corroborate the presence of a certain 
metabolite, the necessary reactions may be included to 
the final model to produce it [12]. The task-driven INIT 
(tINIT) is an extension of the previous algorithm [41]. 
The improvement is based on the possibility to define a 
metabolic task in agreement with the context of the recon-
struction. These may be the consumption or production of 
a metabolite or activation of the reactions of a particular 
pathway for the tissue.

2.2.2 � MBA

Differently from INIT, the Model-Build Algorithm (MBA) 
[34] returns only a final model and no flux values. This 
algorithm accepts as input a generic metabolic model and 
two sets of reactions. The first set (C

H
) comprises reac-

tions with high support (e.g., literature) for the inclusion on 
the final model, while the other one (C

M
) contains usually 

information derived from high-throughput data. In an itera-
tive way, all the non-core reactions (based on the previously 
established sets) are removed in a random order, while the 
model is tested for consistency. The iteration ends when all 
the reactions have been submitted for the removal test in 
the final model. The final model should contain the whole 
set of the C

H
, a maximum number of reactions from the C

M
 

and the least possible of the remaining non-core ones, nor-
mally requested to avoid connectivity issues.

Since the order by which each reaction is tested for 
removal matters, there is the need to repeat this algorithm 
several times to obtain a set of models. The final one 
should be a model based on the ranking of the frequency of 
the reactions in the set, adding them to the C

H
 core until a 

coherent model is found [34].

2.2.3 � mCADRE

The Metabolic Context specificity Assessed by Determinis-
tic Reaction Evaluation (mCADRE) [35] algorithm is quite 
similar to the MBA, but only requires the reconstruction of 
a single model. It is initialized by ranking the reactions on 
the original model using three distinct scores: confidence, 
expression and connectivity. With the help of a threshold 
value for the scores, a core of reactions and the order of 
removal of the non-core ones is established.

The input for the algorithm considers the frequency of 
expression states in a set of profiles (requiring a change of 
the data to binary values), instead of levels of expression. 
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Regarding the connectivity, the reactions are ranked by the 
reactions in the “neighborhood”. For the confidence levels, 
the reactions are ranked according to the evidences of that 
reaction in the general metabolic model.

In the process of the reconstruction, if the removal of a 
non-core reaction does not compromise the production of 
essential metabolites and the core of reactions, those reac-
tions are removed on the previous order. However, if a par-
ticular situation requires it, the elimination of core reac-
tions is possible.

2.2.4 � FASTCORE

In a similar approach to MBA (trying not to alter the set 
of core reactions), the FASTCORE [42] algorithm uses 
another strategy by solving two Linear Problems (LP). The 
first maximizes the number of reactions in the core com-
paring the values of a reaction with a constant, while the 
other decreases the number of reactions that are absent in 

the core by minimizing the L
1
-norm of the flux vector. Until 

the core is coherent (the whole set of core reactions is acti-
vated with the smallest number of non-core reactions), both 
problems are being solved alternatively and in a repeated 
way. For reversible reactions, the algorithm analyses both 
directions.

3 � Results and Discussion

In this study, we reconstructed 16 models comprising all 
the four algorithms described above, using both condi-
tions and data sources. Due to the fact that we are using 
the Recon1 metabolic model as the template model for 
the tissue-specific models, the data used are filtered for 
the genes present in this model. All the software tools 
used and datasets are provided, to allow for full repro-
ducibility of the results, in a software container (using 
the Docker application). The image and instructions 

Table 1   Formulation and 
description of algorithms of 
MBA, tINIT, mCADRE and 
FASTCORE

In the table, R
G

 represents the 
list of reactions from the global 
template model, R

C
 the set of 

core reactions on mCADRE, C
H

 
and C

M
 the core and moderate 

probability sets used in MBA, r 
a reaction and the for(i) and the 
rev(i) represent the ith reaction 
direction (forward and reverse). 
In the FASTCORE algorithm, 
N is the set of all reactions in 
the model, C is the core set 
of reactions, and I the set of 
irreversible reactions. J ⊆ C 
is a set with the irreversible 
reactions from C and 
P = (N�C)�A is a “penalty” set 
which contains all the non-core 
reactions that have not been 
added to A
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for running it are provided in Docker Hub: https://hub.
docker.com/r/saracorreia/is_cls_hepg2.

For the reconstruction of the MBA models, we gen-
erated 50 different models and merged them into a sin-
gle model (the cutoffs for the creation of the core were 
“High” and “Medium” for the HPA data and 0.9 and 0.5 
for the GEB data). For both the mCADRE and FAST-
CORE cores, the cutoffs were either “Medium” or 0.5, for 
HPA and GEB data, respectively. Finally, for the tINIT 
algorithm, the cutoffs for the levels “High”, “Medium”, 
“Low” and “Not Detected” were, respectively, 0.9, 0.5, 
0.1 and 0. Also for the tINIT algorithm, we provided a set 
of specific metabolic tasks that the cell needs to perform 
that were given on the original paper for the algorithm 
[41].

For a visual understanding of the results, we display 
Venn Diagrams in Figs. 1 and 2, with the number of reac-
tions that are shared for each set of conditions and different 
data sources.

Analysing the figures, we can tell that the algorithm that 
shares the most reactions between the two conditions for 
both data sources is the tINIT algorithm. This may be due 
to the nature of the algorithm because, although it cannot 
guarantee that the model is capable of performing all the 
tasks, if possible, it tries to find a set of essential reactions 
and ensures that those reactions in the model have flux. For 
the other algorithms, their percentage of shared reactions is 
very similar (although the MBA for HPA data has the low-
est percentage of shared reactions).

The next step was to execute a hierarchical clustering 
process of the 16 models. With this method, we will try to 
identify the relations between conditions, data sources and 
algorithms.

Taking a closer look at the clustering results (Fig.  3), 
we can clearly see different patterns. Considering the three 
higher level clusters, the first one includes all the tINIT 
models (including normal and cancer cells and both data 
sources) and the other two all other algorithms. This can 
be explained by the use of the metabolic tasks in tINIT that 
influence heavily the set of reactions to be included in all 
models. A further analysis could be to try to find alterna-
tive tasks, more consistent with cancer cells, which is out 
of scope of this work.

The other two groups, as one would expect, are clustered 
by condition, healthy and cancer cells, which shows that 
there are significant differences between both types of mod-
els, regardless of type of data and algorithm. Within each 
of these two clusters, two sub-clusters emerge, one for each 
data source (GEB and HPA), showing that the data source 
seems to be more discriminant than the algorithm.

Finally, within these sub-clusters, including three 
models from three algorithms, FASTCORE models are 
always closer to mCADRE, with MBA further apart. This 
is expected given the way the different algorithms are 
designed, as explained above.

Another test to the models obtained was conducted by 
performing an enrichment analysis. With the objective of 
evaluating the processes that are lost and gained by the 
cancer cells when compared to the normal ones, a p value 
of 0.025 was used while using the Category and GOstats 
packages from Bioconductor. With the proteomics data as 
input, processes contributing to the production of small 
molecules (e.g., nucleotides) were lost in the MBA models, 
while the pathways related to the metabolism of fatty acids 
were enriched. The processes lost in the mCADRE model 
were similar to the MBA one, while ion transport processes 

Fig. 1   Common and exclusive 
reactions between Normal and 
Cancer cells from HPA data 
using MBA, mCADRE, tINIT 
and FASTCORE algorithms. 
The values under each Venn 
diagram represent the percent-
age of shared reactions for both 
conditions. The blue one is rela-
tive to the normal model and the 
green to the cancer one

https://hub.docker.com/r/saracorreia/is%5fcls%5fhepg2
https://hub.docker.com/r/saracorreia/is%5fcls%5fhepg2
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were “acquired”. In the tINIT one, processes lost were 
associated with the metabolism of fatty acids and enrich-
ment with the production of ATP and nucleotides. Finally, 
for the FASTCORE the HepG2 model has an increase of 
production of ATP processes (like the tINIT) and small 
molecules resorting to different pathways.

For the transcriptomics data, MBA models lost mostly 
the same processes as the ones considering proteomics 
data, and the ones enriched were related to the metabo-
lism of carboxylic and organic acids, and also to oxoacid 
processes. For the mCADRE models, the results were 
also similar to the MBA ones, with the addition of oxida-
tion–reduction and ATP synthesis in mitochondria pro-
cesses, while the processes that were enriched were also 

related to ions transport (in concordance with the proteom-
ics data). Looking at the tINIT models, the processes lost 
were the same as the enriched ones on the MBA models 
for the transcriptomics data (metabolism of carboxylic and 
organic acids and oxoacid processes) and the ones enriched 
were the same as the ones enriched on the proteomics data 
by the same algorithm, production of ATP and nucleotides. 
At last, the FASTCORE algorithm shows lost of production 
of small molecules and acid metabolism and demonstrates 
an enrichment of same processes. This may suggest that the 
HepG2 cell line is obtaining the same metabolites through 
different reactions/pathways.

In another analysis, we decided to evaluate the perfor-
mance of the models by verifying how many liver-specific 
metabolic tasks (from [9]) they could complete. From a 
total of 408 tasks tested, Recon1 can perform 281. Table 2 
illustrates the percentage of tasks that our tissue-specific 
models can perform and the heatmap present in Fig.  4 
shows which subset of the metabolic tasks are performed 
by each model (some subsets were removed since no mod-
els were able to perform any task).

There are several aspects in this analysis. Looking at the 
Table 2, we can see that the algorithm that has a higher per-
centage of tasks performed is the tINIT and in average the 
tumor models are able to fulfill around 5% more tasks than 
the normal ones.

Looking particularly at both models from the HPA data, 
they mainly differ in two aspects: the normal tissue-specific 
model is not capable of catabolizing bilirubin and biosyn-
thesizing fatty acids; on the other hand, the cancer model is 
not able to biosynthesize creatine. It has been reported that 
a low level of production of creatine is common in liver 
cancer patients [43].

Fig. 2   Common and exclusive 
in reactions between normal 
and cancer cells from GEB data 
using MBA, mCADRE, tINIT 
and FASTCORE algorithms. 
The values under each Venn 
diagram represent the percent-
age of shared reactions for both 
conditions. The blue one is rela-
tive to the normal model and the 
green to the cancer one

Fig. 3   Hierarchical clustering of all the 16 models generated with the 
method “complete”
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Looking at the GEB models, both are not capable of 
catabolizing bilirubin and transforming fatty acid (which 
at least the normal tissue should be able to accomplish), 
the tumor one is not capable of performing detoxification 
of xenobiotics. Indeed, it has been reported that the way 
these compounds are metabolized can affect the outcome 
of the liver cancer [44]. However, the tumor model is not 
able to perform gluconeogenesis and this is different from 
expected, since one of the treatments applied to this type of 
cancer is the inhibition of this pathway [45].

The algorithm that performed worse was without any 
doubt the mCADRE one. Even though the best model is the 
one based on the GEB data for the normal tissue, it is only 
capable of performing 26.7% of the tasks. Looking at the 
FASTCORE algorithm, none of them is capable of detoxi-
fication of xenobiotics, catabolism of bilirubin, fatty acid 
transformation or gluconeogenesis. Curiously, both HepG2 
models for the FASTCORE algorithm are not able to bio-
synthesize sphingolipids.

Finally, looking at the MBA models, we can see that the 
model generated with the HPA data for the normal tissue 
is the “worst” model of the group. We can also verify that 
none of the tissue-specific models is capable of perform-
ing glycogenesis or gluconeogenesis or even fatty acid 
transformation.

As the final part of the work, we decided to “force” our 
cancer models to produce biomass. This makes biological 
sense, since cancer cells evolve to replicate as fast as pos-
sible; therefore, it is expected that they possess the cellular 
machinery to obtain all needed precursors.

The Recon1 model does not possess a biomass reaction. 
We, thus, retrieved this reaction from the Recon2 model 
[6] and introduced it to the Recon1 model. However, none 
of our tissue-specific models were capable of producing 
it. The Table 3 shows how many biomass precursors each 
model was able to achieve.

This analysis was achieved by performing an FBA in 
which the objective function was the maximization of the 

excretion of each metabolite and using the RPMI-1640 
medium from Folger et al. [27]. tINIT and MBA have the 
best overall results for the production of the precursors of 
biomass, with mCADRE being the “least” capable of such 
task.

Due to this, we decided to add the reactions necessary 
for each model to fulfill the production of biomass. Table 4 
shows the number of reactions needed to add to each model 
to be able to produce biomass.

As expected, the tINIT algorithm models are the ones 
who need the least number of reactions to be able to pro-
duce biomass. MBA reconstructed models need more 
reactions to be introduced into their models. Again, the 
mCADRE algorithm showed the highest number of reac-
tions needed. It is also worth noticing that in the general 
case, the tumor models produce more precursors and need 
less reactions to be able to produce biomass, which may be 
biologically plausible.

As the final objective of this work, we decided to per-
form an FBA to evaluate the differences in the produc-
tion of biomass for the different cancer models generated 
(Table 5).

Since the production of the Recon1 model with the bio-
mass reaction is also 0.084 mmol.gDW−1 h−1, there are four 
models which can achieve the same amount of biomass 
production and mCADRE has the lowest overall amount. 
This shows that the generated cancer models are able to 
grow at the maximum theoretical level, which is the one 
defined by the template global GSMM.

4 � Conclusions and Future Perspectives

The full understanding of the mechanism that lies beyond 
a human cell is still far away. Different layers of cell func-
tions like metabolism or regulation are still not fully under-
stood, making a difficult task to merge all the knowledge 
that we currently have. However, the integration of tran-
scriptomics/proteomics data to infer the metabolism of a 
certain type of cell can give us some important insights.

Using the workflow presented in this work, we were able 
to evaluate how different algorithms can be used for two 
types of data and reconstruct a tissue-specific model for 
the healthy and cancer liver cells. As most of other can-
cer types, liver cancer is a disease which kills millions of 
humans and for which we still have few knowledge. With 
this kind of approach, in spite of many limitations, we are 
able to simulate what occurs in its metabolism and study 
the differences between the different approaches can lead to 
a panoply of results.

In this particular study, the algorithm that yielded 
more consistent and probably biological meaningful 
results was the tINIT. It was the one closer to simulate 

Table 2   Percentage of performed tasks by condition and algorithm 
of the 281 tasks that Recon1 is able to perform

MBA (%) mCADRE 
(%)

tINIT (%) FAST-
CORE 
(%)

Mean (%)

Normal_
HPA

7.8 9.6 87.9 58.4 50.7

Normal_
GEB

55.2 26.7 88.6 71.5

HepG2_
HPA

63 2.5 92.5 40.5 55.3

HepG2_
GEB

79.4 10.3 76.5 71.9
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a liver cell and the differences in the performance of the 
tasks could lead to a better understanding of how the 
metabolism could be an important target for the therapy 
of the liver cancer. However, the models generated by 
this algorithm are the ones that comprise more reactions, 
which can imply that they are “closer” to the Recon1 and 
possibly not being as informative as desired. In addition, 
if we look at the clustering of the models, the groups 
formed by the tINIT cluster together normal and cancer 

Fig. 4   Heatmap illustrating the percentage of the subset of the metabolic tasks (that can be done by Recon1) performed by each tissue-specific 
metabolic models

Table 3   Number of precursors that each cancer model had before the 
inclusion of the new reactions to be able to produce biomass (38 in 
total)

MBA mCADRE tINIT FASTCORE

HepG2_HPA 29 9 32 23
HepG2_GEB 33 14 28 26

Table 4   Number of reactions added to each cancer model to be able 
to produce biomass

MBA mCADRE tINIT FASTCORE

HepG2_HPA 17 28 8 26
HepG2_GEB 9 30 10 16

Table 5   Production of biomass by the cancer models after the inte-
gration of the necessary reactions (in mmol gDW−1 h−1)

MBA mCADRE tINIT FASTCORE

HepG2_HPA 0.084 0.003 0.069 0.029
HepG2_GEB 0.084 0.012 0.084 0.084
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models, which was not expected and may lead to “false 
positives”.

With this in mind, the next choice would be the MBA 
algorithm. Even if the FASTCORE algorithm has fewer 
reactions, FASTCORE clusters closer to the mCADRE 
models, which performed poorly in the tasks and produc-
tion of biomass. MBA models contained more precursors 
and needed less reactions to be added to the model to be 
able to produce biomass and both models produced the 
same amount as the Recon1 model. The main problem 
with this algorithm is the need to create a good number of 
“submodels” which is time consuming (in this aspect, the 
FASTCORE algorithm is much faster).

All algorithms have their advantages and disadvantages, 
so it is not easy to pick the “ideal” algorithm. The use of 
other template models, the creation of new algorithms for 
tissue-specific reconstructions and the integration of other 
types of data, like regulation of gene expression, could 
improve the knowledge that we have for this specific case 
and other important case studies.
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