92 research outputs found

    HSD3B1 genotype identifies glucocorticoid responsiveness in severe asthma

    Get PDF
    Asthma resistance to glucocorticoid treatment is a major health problem with unclear etiology. Glucocorticoids inhibit adrenal androgen production. However, androgens have potential benefits in asthma. HSD3B1 encodes for 3β-hydroxysteroid dehydrogenase-1 (3β-HSD1), which catalyzes peripheral conversion from adrenal dehydroepiandrosterone (DHEA) to potent androgens and has a germline missense-encoding polymorphism. The adrenal restrictive HSD3B1(1245A) allele limits conversion, whereas the adrenal permissive HSD3B1(1245C) allele increases DHEA metabolism to potent androgens. In the Severe Asthma Research Program (SARP) III cohort, we determined the association between DHEA-sulfate and percentage predicted forced expiratory volume in 1 s (FEV1PP). HSD3B1(1245) genotypes were assessed, and association between adrenal restrictive and adrenal permissive alleles and FEV1PP in patients with (GC) and without (noGC) daily oral glucocorticoid treatment was determined (n = 318). Validation was performed in a second cohort (SARP I&II; n = 184). DHEA-sulfate is associated with FEV1PP and is suppressed with GC treatment. GC patients homozygous for the adrenal restrictive genotype have lower FEV1PP compared with noGC patients (54.3% vs. 75.1%; P < 0.001). In patients with the homozygous adrenal permissive genotype, there was no FEV1PP difference in GC vs. noGC patients (73.4% vs. 78.9%; P = 0.39). Results were independently confirmed: FEV1PP for homozygous adrenal restrictive genotype in GC vs. noGC is 49.8 vs. 63.4 (P < 0.001), and for homozygous adrenal permissive genotype, it is 66.7 vs. 67.7 (P = 0.92). The adrenal restrictive HSD3B1(1245) genotype is associated with GC resistance. This effect appears to be driven by GC suppression of 3β-HSD1 substrate. Our results suggest opportunities for prediction of GC resistance and pharmacologic intervention

    Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures

    Get PDF
    A comprehensive and standardized system to report lipid structures analyzed by mass spectrometry is essentialfor the communication and storage of lipidomics data. Herein, an update on both the LIPID MAPSclassification system and shorthand notation of lipid structures is presented for lipid categories Fatty Acyls(FA), Glycerolipids (GL), Glycerophospholipids (GP), Sphingolipids (SP), and Sterols (ST). With its majorchanges, i.e. annotation of ring double bond equivalents and number of oxygens, the updated shorthandnotation facilitates reporting of newly delineated oxygenated lipid species as well. For standardized reportingin lipidomics, the hierarchical architecture of shorthand notation reflects the diverse structural resolutionpowers provided by mass spectrometric assays. Moreover, shorthand notation is expanded beyond mammalianphyla to lipids from plant and yeast phyla. Finally, annotation of atoms is included for the use of stableisotope-labelled compounds in metabolic labelling experiments or as internal standards

    Clinical quantification of the integrin αvβ6 by [18F]FB-A20FMDV2 positron emission tomography in healthy and fibrotic human lung (PETAL Study)

    Get PDF
    © 2019, The Author(s). Purpose: The RGD-integrin, αvβ6, plays a role in the pathogenesis of pulmonary fibrosis through activation of transforming growth factor beta (TGFβ). This study sought to quantify expression of αvβ6 in the lungs of healthy humans and subjects with pulmonary fibrosis using the αvβ6-selective [18F]FB-A20FMDV2 PET ligand. Methods: [18F]FB-A20FMDV2 PET/CT scans were performed in healthy subjects and those with fibrotic lung disease. Standard uptake values (SUV) and volume of distribution (VT) were used to quantify αvβ6 expression. In subjects with fibrotic lung disease, qualitative assessment of the relationship between αvβ6 expression and the distribution of fibrosis on high resolution computed tomography was conducted. Results: A total of 15 participants (6 healthy, 7 with idiopathic pulmonary fibrosis (IPF) and 2 with connective tissue disease (CTD) associated PF) were enrolled. VT and SUV of [18F]FB-A20FMDV2 were increased in the lungs of subjects with pulmonary fibrosis (PF) compared with healthy subjects. Geometric mean VT (95% CI) was 0.88 (0.60, 1.29) mL/cm3 for healthy subjects, and 1.40 (1.22, 1.61) mL/cm3 for subjects with IPF; and SUV was 0.54 (0.36, 0.81) g/mL for healthy subjects and 1.03 (0.86, 1.22) g/mL for subjects with IPF. The IPF/healthy VT ratio (geometric mean, (95% CI of ratio)) was 1.59 (1.09, 2.32) (probability ratio > 1 = 0.988)) and the SUV ratio was 1.91 (1.27, 2.87) (probability ratio > 1 = 0.996). Increased uptake of [18F]FB-A20FMDV2 in PF was predominantly confined to fibrotic areas. [18F]FB-A20FMDV2 measurements were reproducible at an interval of 2 weeks. [18F]FB-A20FMDV2 was safe and well tolerated. Conclusions: Lung uptake of [18F]FB-A20FMDV2, a measure of expression of the integrin αvβ6, was markedly increased in subjects with PF compared with healthy subjects

    A positron emission tomography imaging study to confirm target engagement in the lungs of patients with idiopathic pulmonary fibrosis following a single dose of a novel inhaled αvβ6 integrin inhibitor

    Get PDF
    © 2020 The Author(s). Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with poor prognosis and a significant unmet medical need. This study evaluated the safety, pharmacokinetics (PK) and target engagement in the lungs, of GSK3008348, a novel inhaled alpha-v beta-6 (αvβ6) integrin inhibitor, in participants with IPF. Methods: This was a phase 1b, randomised, double-blind (sponsor unblind) study, conducted in the UK (two clinical sites, one imaging unit) between June 2017 and July 2018 (NCT03069989). Participants with a definite or probable diagnosis of IPF received a single nebulised dose of 1000 mcg GSK3008348 or placebo (ratio 5:2) in two dosing periods. In period 1, safety and PK assessments were performed up to 24 h post-dose; in period 2, after a 7-day to 28-day washout, participants underwent a total of three positron emission tomography (PET) scans: Baseline, Day 1 (~ 30 min post-dosing) and Day 2 (~ 24 h post-dosing), using a radiolabelled αvβ6-specific ligand, [18F]FB-A20FMDV2. The primary endpoint was whole lung volume of distribution (VT), not corrected for air volume, at ~ 30 min post-dose compared with pre-dose. The study success criterion, determined using Bayesian analysis, was a posterior probability (true % reduction in VT > 0%) of ≥80%. Results: Eight participants with IPF were enrolled and seven completed the study. Adjusted posterior median reduction in uncorrected VT at ~ 30 min after GSK3008348 inhalation was 20% (95% CrI:-9 to 42%). The posterior probability that the true % reduction in VT > 0% was 93%. GSK3008348 was well tolerated with no reports of serious adverse events or clinically significant abnormalities that were attributable to study treatment. PK was successfully characterised showing rapid absorption followed by a multiphasic elimination. Conclusions: This study demonstrated engagement of the αvβ6 integrin target in the lung following nebulised dosing with GSK3008348 to participants with IPF. To the best of our knowledge this is the first time a target-specific PET radioligand has been used to assess target engagement in the lung, not least for an inhaled drug. Trial registration: Clinicaltrials.gov: NCT03069989; date of registration: 3 March 2017

    Central pancreatectomy without anastomosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Central pancreatectomy has a unique application for lesions in the neck of the pancreas. It preserves the distal pancreas and its endocrine functions. It also preserves the spleen.</p> <p>Methods</p> <p>This is a retrospective review of 10 patients who underwent central pancreatectomy without pancreatico-enteric anastomosis between October 2005 and May 2009. The surgical indications, operative outcomes, and pathologic findings were analyzed.</p> <p>Results</p> <p>All 10 lesions were in the neck of the pancreas and included: 2 branch intraductal papillary mucinous neoplasms (IPMNs), a mucinous cyst, a lymphoid cyst, 5 neuroendocrine tumors, and a clear cell adenoma.</p> <p>Conclusion</p> <p>Central pancreatectomy without pancreatico-enteric anastomosis for lesions in the neck and proximal pancreas is a safe and effective procedure. Morbidity is low because there is no anastomosis. Long term endocrine and exocrine function has been maintained.</p

    Sigma-2 receptor ligands potentiate conventional chemotherapies and improve survival in models of pancreatic adenocarcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously reported that the sigma-2 receptor is highly expressed in pancreas cancer. Furthermore, we have demonstrated that sigma-2 receptor specific ligands induce apoptosis in a dose-dependent fashion. Here, we examined whether sigma-2 receptor ligands potentiate conventional chemotherapies such as gemcitabine and paclitaxel.</p> <p>Methods</p> <p>Mouse (Panc-02) and human (CFPAC-1, Panc-1, AsPC-1) pancreas cancer cell lines were used in this study. Apoptosis was determined by FACS or immunohistochemical analysis after TUNEL and Caspase-3 staining. Combination therapy with the sigma-2 ligand SV119 and the conventional chemotherapies gemcitabine and paclitaxel was evaluated in an allogenic animal model of pancreas cancer.</p> <p>Results</p> <p>SV119, gemcitabine, and paclitaxel induced apoptosis in a dose-dependent fashion in all pancreas cancer cell lines tested. Combinations demonstrated increases in apoptosis. Mice were treated with SV119 (1 mg/day) which was administered in combination with paclitaxel (300 μg/day) over 7 days to mice with established tumors. A survival benefit was observed with combination therapy (p = 0.0002). Every other day treatment of SV119 (1 mg/day) in combination with weekly treatment of gemcitabine (1.5 mg/week) for 2 weeks also showed a survival benefit (p = 0.046). Animals tolerated the combination therapy and no gross toxicity was noted in serum biochemistry data or on necropsy.</p> <p>Conclusion</p> <p>SV119 augments tumoricidal activity of paclitaxel and gemcitabine without major side effects. These results highlight the potential utility of the sigma-2 ligand as an adjuvant treatment in pancreas cancer.</p

    PCSK6 and Survival in Idiopathic Pulmonary Fibrosis

    Get PDF
    Rationale: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by limited treatment options and high mortality. A better understanding of the molecular drivers of IPF progression is needed. Objectives: To identify and validate molecular determinants of IPF survival. Methods: A staged genome-wide association study was performed using paired genomic and survival data. Stage I cases were drawn from centers across the United States and Europe and stage II cases from Vanderbilt University. Cox proportional hazards regression was used to identify gene variants associated with differential transplantation-free survival (TFS). Stage I variants with nominal significance (P < 5 x 10(-5)) were advanced for stage II testing and meta-analyzed to identify those reaching genome-wide significance (P < 5 x 10(-8)). Downstream analyses were performed for genes and proteins associated with variants reaching genome-wide significance. Measurements and Main Results: After quality controls, 1,481 stage I cases and 397 stage II cases were included in the analysis. After filtering, 9,075,629 variants were tested in stage I, with 158 meeting advancement criteria. Four variants associated with TFS with consistent effect direction were identified in stage II, including one in an intron of PCSK6 (proprotein convertase subtilisin/kexin type 6) reaching genome-wide significance (hazard ratio, 4.11 [95% confidence interval, 2.54-6.67]; P = 9.45 x 10(-9)). PCSK6 protein was highly expressed in IPF lung parenchyma. PCSK6 lung staining intensity, peripheral blood gene expression, and plasma concentration were associated with reduced TFS. Conclusions: We identified four novel variants associated with IPF survival, including one in PCSK6 that reached genome-wide significance. Downstream analyses suggested that PCSK6 protein plays a potentially important role in IPF progression

    LIPID MAPS: Update to databases and tools for the lipidomics community

    Get PDF
    LIPID MAPS (LIPID Metabolites and Pathways Strategy), www.lipidmaps.org, provides a systematic and standardized approach to organizing lipid structural and biochemical data. Founded 20 years ago, the LIPID MAPS nomenclature and classification has become the accepted community standard. LIPID MAPS provides databases for cataloging and identifying lipids at varying levels of characterization in addition to numerous software tools and educational resources, and became an ELIXIR-UK data resource in 2020. This paper describes the expansion of existing databases in LIPID MAPS, including richer metadata with literature provenance, taxonomic data and improved interoperability to facilitate FAIR compliance. A joint project funded by ELIXIR-UK, in collaboration with WikiPathways, curates and hosts pathway data, and annotates lipids in the context of their biochemical pathways. Updated features of the search infrastructure are described along with implementation of programmatic access via API and SPARQL. New lipid-specific databases have been developed and provision of lipidomics tools to the community has been updated. Training and engagement have been expanded with webinars, podcasts and an online training school

    Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways

    Get PDF
    Background The Chr17q12-21.2 region is the strongest and most consistently associated region with asthma susceptibility. The functional genes or single nucleotide polymorphisms (SNPs) are not obvious due to linkage disequilibrium. Objectives We sought to comprehensively investigate whole-genome sequence and RNA sequence from human bronchial epithelial cells to dissect functional genes/SNPs for asthma severity in the Severe Asthma Research Program. Methods Expression quantitative trait loci analysis (n = 114), correlation analysis (n = 156) of gene expression and asthma phenotypes, and pathway analysis were performed in bronchial epithelial cells and replicated. Genetic association for asthma severity (426 severe vs 531 nonsevere asthma) and longitudinal asthma exacerbations (n = 273) was performed. Results Multiple SNPs in gasdermin B (GSDMB) associated with asthma severity (odds ratio, >1.25) and longitudinal asthma exacerbations (P < .05). Expression quantitative trait loci analyses identified multiple SNPs associated with expression levels of post-GPI attachment to proteins 3, GSDMB, or gasdermin A (3.1 × 10−9 < P < 1.8 × 10−4). Higher expression levels of GSDMB correlated with asthma and greater number of exacerbations (P < .05). Expression levels of GSDMB correlated with genes involved in IFN signaling, MHC class I antigen presentation, and immune system pathways (false-discovery rate–adjusted P < .05). rs1031458 and rs3902920 in GSDMB colocalized with IFN regulatory factor binding sites and associated with GSDMB expression, asthma severity, and asthma exacerbations (P < .05). Conclusions By using a unique set of gene expression data from lung cells obtained using bronchoscopy from comprehensively characterized subjects with asthma, we show that SNPs in GSDMB associated with asthma severity, exacerbations, and GSDMB expression levels. Furthermore, its expression levels correlated with asthma exacerbations and antiviral pathways. Thus, GSDMB is a functional gene for both asthma susceptibility and severity

    Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis

    Get PDF
    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterised by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defence, telomere maintenance, signalling and cell-cell adhesion. Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations. Methods and measurements: We conducted genome-wide analyses across three independent studies and meta-analysed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF. Main results: We identified and replicated three new genome-wide significant (P<5×10−8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1 and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as-yet unreported IPF susceptibility variants contribute to IPF susceptibility. Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF, supports recent studies demonstrating the importance of mTOR signalling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility
    corecore