355 research outputs found

    Transition of D- Level Quantum Systems Through Quantum Channels with Correlated Noise

    Full text link
    Entanglement and entanglement-assisted are useful resources to enhance the mutual information of the Pauli channels, when the noise on consecutive uses of the channel has some partial correlations. In this Paper, we study quantum-communication channels in dd-dimensional systems and derive the mutual information of the quantum channels for maximally entangled states and product states coding with correlated noise. Then, we compare fidelity between these states. Our results show that there exists a certain fidelity memory threshold which depends on the dimension of the Hilbert space (d)(d) and the properties of noisy channels. We calculate the classical capacity of a particular correlated noisy channel and show that in order to achieve Holevo limit, we must use dd particles with dd degrees of freedom. Our results show that entanglement is a useful means to enhance the mutual information. We choose a special non-maximally entangled state and show that in the quasi-classical depolarizing and quantum depolarizing channels, maximum classical capacity in the higher memory channels is given by the maximally entangled state. Hence, our results show that for high error channels in every degree of memory, maximally entangled states have better mutual information.Comment: 15 pages, 5 figures, PHYSICAL REVIEW A 75, 042301 (2007

    EVALUASI KEBIJAKAN PEMERINTAH DI BAGIAN INFRASTRUKTUR UNTUK MENDUKUNG KOTA TIDORE KEPULAUAN SEBAGAI KOTA JASA BERBASIS AGROMARINE

    Get PDF
    Persiapan pembangunan dari segi fisik infrastruktur prioritas dapat melalui identifikasi potensi dan serta perencanaan induk dalam mendukung pengembangan Kota Tidore Kepulauan sebagai kota jasa berbasis agromarine. Dengan basis Agromarine yang merupakan percepatan dan mengoptimalkan pembangunan dan percepatan pemanfaatan sumber daya potensial dan unggulan di darat maupun di laut yang meliputi sektor perikanan, pariwisata, pertanian untuk mewujudkan kesejahteraan masyarakat. Infrastruktur menjadi faktor utama untuk mendukung terwujudnya Kota Tidore Kepulauan sebagai kota jasa berbasi agromarine, karena pola agromarine di tekankan harus didukung dengan pembangunan infrasktruktur yang memawadai. Tujuan penelitian ini adalah untuk mengetahui Kota Tidore Kepulauan menjadi kota jasa berbasis agromarine dengan mengidentifikasi dan mengevaluasi 5 bidang pendukung di program infrastruktur.Penelitian ini mengunakan metode analisis Deskrpitif Kualitatif dan evaluatif dengan mengidentifikasi data yang sudah ada di 5 bidang pada program infrastrukutur, dan mengevaluasi menggunakan parameter yang telah di tentukan.Hasil rangkaian analisis yang di lakukan, di peroleh bahwa 5 bidang khususnya program infrastruktur tahun 2016-2018 dari 5 bidang belum semua mencapai target (100%) di antaranya di bidang Petanian 2016, 33% 2017, 33%, 2018, 66%, di bidang perikanan 2016, 50%. 2017, 50%, 2018 50%, di bidang kelauatan 2016, 50%, 2017, 50%, 2018, 50%, di bidang pariwisata 2016, 66%, 2017, 33%, 2018, 66%, di bidang pekerjaan umum 2016, 42%, 2017, 50%, 2018, 65%. 5 bidang pada pogram Infrastruktur banyak yang belum sesuai dengan kebijakan yang di buat oleh pemerintah.Kata Kunci: Agromarine, Program, Infrastruktur, Kota Tidore Kepulauan

    Seismic imaging and petrology explain highly explosive eruptions of Merapi Volcano, Indonesia

    Get PDF
    Our seismic tomographic images characterize, for the first time, spatial and volumetric details of the subvertical magma plumbing system of Merapi Volcano. We present P-and S-wave arrival time data, which were collected in a dense seismic network, known as DOMERAPI, installed around the volcano for 18 months. The P-and S-wave arrival time data with similar path coverage reveal a high Vp/Vs structure extending from a depth of >= 20 km below mean sea level (MSL) up to the summit of the volcano. Combined with results of petrological studies, our seismic tomography data allow us to propose: (1) the existence of a shallow zone of intense fluid percolation, directly below the summit of the volcano; (2) a main, pre-eruptive magma reservoir at >= 10 to 20 km below MSL that is orders of magnitude larger than erupted magma volumes; (3) a deep magma reservoir at MOHO depth which supplies the main reservoir; and (4) an extensive, subvertical fluid-magma-transfer zone from the mantle to the surface. Such high-resolution spatial constraints on the volcano plumbing system as shown are an important advance in our ability to forecast and to mitigate the hazard potential of Merapi's future eruptions.We gratefully acknowledge the French Agence Nationale pour la Recherche for funding the DOMERAPI ANR project (ANR- 12-BS06-0012) and BMKG for providing data used in this stud

    Sect and House in Syria: History, Architecture, and Bayt Amongst the Druze in Jaramana

    Get PDF
    This paper explores the connections between the architecture and materiality of houses and the social idiom of bayt (house, family). The ethnographic exploration is located in the Druze village of Jaramana, on the outskirts of the Syrian capital Damascus. It traces the histories, genealogies, and politics of two families, bayt Abud-Haddad and bayt Ouward, through their houses. By exploring the two families and the architecture of their houses, this paper provides a detailed ethnographic account of historical change in modern Syria, internal diversity, and stratification within the intimate social fabric of the Druze neighbourhood at a time of war, and contributes a relational approach to the anthropological understanding of houses

    Self-Assembly of Supramolecular Triblock Copolymer Complexes

    Get PDF
    Four different poly(tert-butoxystyrene)-b-polystyrene-b-poly(4-vinylpyridine) (PtBOS-b-PS-b-P4VP) linear triblock copolymers, with the P4VP weight fraction varying from 0.08 to 0.39, were synthesized via sequential anionic polymerization. The values of the unknown interaction parameters between styrene and tert-butoxystyrene and between tert-butoxystyrene and 4-vinylpyridine were determined from random copolymer blend miscibility studies and found to satisfy 0.031<χS,tBOS<0.034 and 0.39<χ4VP,tBOS<0.43, the latter being slightly larger than the known 0.30<χS,4VP≀0.35 value range. All triblock copolymers synthesized adopted a P4VP/PS core/shell cylindrical self-assembled morphology. From these four triblock copolymers supramolecular complexes were prepared by hydrogen bonding a stoichiometric amount of pentadecylphenol (PDP) to the P4VP blocks. Three of these complexes formed a triple lamellar ordered state with additional short length scale ordering inside the P4VP(PDP) layers. The self-assembled state of the supramolecular complex based on the triblock copolymer with the largest fraction of P4VP consisted of alternating layers of PtBOS and P4VP(PDP) layers with PS cylinders inside the latter layers. The difference in morphology between the triblock copolymers and the supramolecular complexes is due to two effects: (i) a change in effective composition and, (ii) a reduction in interfacial tension between the PS and P4VP containing domains. The small angle X-ray scattering patterns of the supramolecules systems are very temperature sensitive. A striking feature is the disappearance of the first order scattering peak of the triple lamellar state in certain temperature intervals, while the higher order peaks (including the third order) remain. This is argued to be due to the thermal sensitivity of the hydrogen bonding and thus directly related to the very nature of these systems.

    Fabrication of Highly Ordered Polymeric Nanodot and Nanowire Arrays Templated by Supramolecular Assembly Block Copolymer Nanoporous Thin Films

    Get PDF
    Realizing the vast technological potential of patternable block copolymers requires both the precise controlling of the orientation and long-range ordering, which is still a challenging topic so far. Recently, we have demonstrated that ordered nanoporous thin film can be fabricated from a simple supramolecular assembly approach. Here we will extend this approach and provide a general route to fabricate large areas of highly ordered polymeric nanodot and nanowire arrays. We revealed that under a mixture solvent annealing atmosphere, a near-defect-free nanoporous thin film over large areas can be achieved. Under the direction of interpolymer hydrogen bonding and capillary action of nanopores, this ordered porous nanotemplate can be properly filled with phenolic resin precursor, followed by curation and pyrolysis at middle temperature to remove the nanotemplate, a perfect ordered polymer nanodot arrays replication was obtained. The orientation of the supramolecular assembly thin films can be readily re-aligned parallel to the substrate upon exposure to chloroform vapor, so this facile nanotemplate replica method can be further extend to generate large areas of polymeric nanowire arrays. Thus, we achieved a successful sub-30 nm patterns nanotemplates transfer methodology for fabricating polymeric nanopattern arrays with highly ordered structure and tunable morphologies

    Visualization and analysis of RNA-Seq assembly graphs.

    Get PDF
    RNA-Seq is a powerful transcriptome profiling technology enabling transcript discovery and quantification. Whilst most commonly used for gene-level quantification, the data can be used for the analysis of transcript isoforms. However, when the underlying transcript assemblies are complex, current visualization approaches can be limiting, with splicing events a challenge to interpret. Here, we report on the development of a graph-based visualization method as a complementary approach to understanding transcript diversity from short-read RNA-Seq data. Following the mapping of reads to a reference genome, a read-to-read comparison is performed on all reads mapping to a given gene, producing a weighted similarity matrix between reads. This is used to produce an RNA assembly graph, where nodes represent reads and edges similarity scores between them. The resulting graphs are visualized in 3D space to better appreciate their sometimes large and complex topology, with other information being overlaid on to nodes, e.g. transcript models. Here we demonstrate the utility of this approach, including the unusual structure of these graphs and how they can be used to identify issues in assembly, repetitive sequences within transcripts and splice variants. We believe this approach has the potential to significantly improve our understanding of transcript complexity

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of users’ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques

    A quantitative systems pharmacology approach, incorporating a novel liver model, for predicting pharmacokinetic drug-drug interactions

    Get PDF
    All pharmaceutical companies are required to assess pharmacokinetic drug-drug interactions (DDIs) of new chemical entities (NCEs) and mathematical prediction helps to select the best NCE candidate with regard to adverse effects resulting from a DDI before any costly clinical studies. Most current models assume that the liver is a homogeneous organ where the majority of the metabolism occurs. However, the circulatory system of the liver has a complex hierarchical geometry which distributes xenobiotics throughout the organ. Nevertheless, the lobule (liver unit), located at the end of each branch, is composed of many sinusoids where the blood flow can vary and therefore creates heterogeneity (e.g. drug concentration, enzyme level). A liver model was constructed by describing the geometry of a lobule, where the blood velocity increases toward the central vein, and by modeling the exchange mechanisms between the blood and hepatocytes. Moreover, the three major DDI mechanisms of metabolic enzymes; competitive inhibition, mechanism based inhibition and induction, were accounted for with an undefined number of drugs and/or enzymes. The liver model was incorporated into a physiological-based pharmacokinetic (PBPK) model and simulations produced, that in turn were compared to ten clinical results. The liver model generated a hierarchy of 5 sinusoidal levels and estimated a blood volume of 283 mL and a cell density of 193 × 106 cells/g in the liver. The overall PBPK model predicted the pharmacokinetics of midazolam and the magnitude of the clinical DDI with perpetrator drug(s) including spatial and temporal enzyme levels changes. The model presented herein may reduce costs and the use of laboratory animals and give the opportunity to explore different clinical scenarios, which reduce the risk of adverse events, prior to costly human clinical studies
    • 

    corecore