158 research outputs found

    Beyond homozygosity mapping: family-control analysis based on Hamming distance for prioritizing variants in exome sequencing

    Get PDF
    A major challenge in current exome sequencing in autosomal recessive (AR) families is the lack of an effective method to prioritize single-nucleotide variants (SNVs). AR families are generally too small for linkage analysis, and length of homozygous regions is unreliable for identification of causative variants. Various common filtering steps usually result in a list of candidate variants that cannot be narrowed down further or ranked. To prioritize shortlisted SNVs we consider each homozygous candidate variant together with a set of SNVs flanking it. We compare the resulting array of genotypes between an affected family member and a number of control individuals and argue that, in a family, differences between family member and controls should be larger for a pathogenic variant and SNVs flanking it than for a random variant. We assess differences between arrays in two individuals by the Hamming distance and develop a suitable test statistic, which is expected to be large for a causative variant and flanking SNVs. We prioritize candidate variants based on this statistic and applied our approach to six patients with known pathogenic variants and found these to be in the top 2 to 10 percentiles of ranks

    Steroid hormones content and proteomic analysis of canine follicular fluid during the preovulatory period

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Follicular fluid contains substances involved in follicle activity, cell differentiation and oocyte maturation. Studies of its components may contribute to better understanding of the mechanisms underlying follicular development and oocyte quality. The canine species is characterized by several ovarian activity features that are not extensively described such as preovulatory luteinization, oocyte ovulated at the GV stage (prophase 1) and poly-oocytic follicles. In this study, we examined the hypothesis that the preovulatory LH surge is associated with changes in steroid and protein content of canine follicular fluid prior to ovulation.</p> <p>Methods</p> <p>Follicular fluid samples were collected from canine ovaries during the preovulatory phase, before (pre-LH; n = 16 bitches) and after (post-LH; n = 16) the LH surge. Blood was simultaneously collected. Steroids were assayed by radioimmunoassay and proteomic analyses were carried out by 2D-PAGE and mass spectrometry.</p> <p>Results</p> <p>The concentrations of 17beta-estradiol and progesterone at the pre-LH stage were 737.2 +/- 43.5 ng/ml and 2630.1 +/- 287.2 ng/ml in follicular fluid vs. 53 +/- 4.1 pg/ml and 3.9 +/- 0.3 ng/ml in plasma, respectively. At that stage, significant positive correlations between follicular size and intra-follicular steroid concentrations were recorded. After the LH peak, the intrafollicular concentration of 17beta-estradiol decreased significantly (48.3 +/- 4.4 ng/ml; p < 0.001), whereas that of progesterone increased (11690.2 +/- 693.6 ng/ml; p < 0.001). Plasmatic concentration of 17beta-estradiol was not modified (49 +/- 9.6 pg/ml) after the LH peak, but that of progesterone significantly increased (9.8 +/- 0.63 ng/ml).</p> <p>Proteomic analysis of canine follicular fluid identified 38 protein spots, corresponding to 21 proteins, some of which are known to play roles in the ovarian physiology. The comparison of 2D-PAGE patterns of follicular fluids from the pre- and post-LH stages demonstrated 3 differentially stained single spot or groups of spots. One of them was identified as complement factor B. A comparison of follicular fluid and plasma protein patterns demonstrated a group of 4 spots that were more concentrated in plasma than in follicular fluid, and a single spot specific to follicular fluid. These proteins were identified as gelsolin and clusterin, respectively.</p> <p>Conclusion</p> <p>Our results provide the first demonstration of size-related changes in the steroid concentrations in canine follicular fluid associated with the LH surge. 2D protein mapping allowed identification of several proteins that may play a role in follicle physiology and ovarian activity at the preovulatory stage. This may help in the future to explain and to better understand the species specificities that are described in dogs.</p

    Investigating the causal role of MRE11A p.E506* in breast and ovarian cancer

    Get PDF
    The nuclease MRE11A is often included in genetic test panels for hereditary breast and ovarian cancer (HBOC) due to its BRCA1-related molecular function in the DNA repair pathway. However, whether MRE11A is a true predisposition gene for HBOC is still questionable. We determined to investigate this notion by dissecting the molecular genetics of the c.1516G > T;p.E506* truncating MRE11A variant, that we pinpointed in two unrelated French-Canadian (FC) HBOC patients. We performed a case-control study for the variant in ~ 2500 breast, ovarian, and endometrial cancer patients from the founder FC population of Quebec. Furthermore, we looked for the presence of second somatic alterations in the MRE11A gene in the tumors of the carriers. In summary, these investigations suggested that the identified variant is not associated with an increased risk of developing breast or ovarian cancer. We finally performed a systematic review for all the previously reported MRE11A variants in breast and ovarian cancer. We found that MRE11A germline variants annotated as pathogenic on ClinVar often lacked evidence for such classification, hence misleading the clinical management for affected patients. In summary, our report suggests the lack of clinical utility of MRE11A testing in HBOC, at least in the White/Caucasian populations

    Mutations in PNPLA6 are linked to photoreceptor degeneration and various forms of childhood blindness

    Get PDF
    Blindness due to retinal degeneration affects millions of people worldwide, but many disease-causing mutations remain unknown. PNPLA6 encodes the patatin-like phospholipase domain containing protein 6, also known as neuropathy target esterase (NTE), which is the target of toxic organophosphates that induce human paralysis due to severe axonopathy of large neurons. Mutations in PNPLA6 also cause human spastic paraplegia characterized by motor neuron degeneration. Here we identify PNPLA6 mutations in childhood blindness in seven families with retinal degeneration, including Leber congenital amaurosis and Oliver McFarlane syndrome. PNPLA6 localizes mostly at the inner segment plasma membrane in photo-receptors and mutations in Drosophila PNPLA6 lead to photoreceptor cell death. We also report that lysophosphatidylcholine and lysophosphatidic acid levels are elevated in mutant Drosophila. These findings show a role for PNPLA6 in photoreceptor survival and identify phospholipid metabolism as a potential therapeutic target for some forms of blindness.Foundation Fighting Blindness CanadaCanadian Institutes of Health ResearchNIHCharles University institutional programmesBIOCEV-Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University, from the European Regional Development FundMinistry of Health of the Czech RepublicGraduate School of Life Sciences (University of Wuerzburg)Government of Canada through Genome CanadaOntario Genomics InstituteGenome QuebecGenome British ColumbiaMcLaughlin CentreCharles Univ Prague, Inst Inherited Metab Disorders, Fac Med 1, Prague 12000 2, Czech RepublicMcGill Univ, Dept Human Genet, Fac Med, Montreal, PQ H3A 0G1, CanadaGenome Quebec Innovat Ctr, Montreal, PQ H3A 0G1, CanadaClin Res Inst Montreal, Cellular Neurobiol Res Unit, Montreal, PQ H2W 1R7, CanadaMcGill Univ, Montreal, PQ H3A 0G4, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, McGill Ocular Genet Lab, Montreal, PQ H3H 1P3, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, Dept Paediat Surg, Montreal, PQ H3H 1P3, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, Dept Human Genet, Montreal, PQ H3H 1P3, CanadaMcGill Univ, Ctr Hlth, Montreal Childrens Hosp, Dept Ophthalmol, Montreal, PQ H3H 1P3, CanadaUniv Alberta, Royal Alexandra Hosp, Dept Ophthalmol & Visual Sci, Edmonton, AB T5H 3V9, CanadaCharles Univ Prague, Inst Biol & Med Genet, Fac Med 1, Prague 12000 2, Czech RepublicBaylor Coll Med, Dept Mol & Human Genet, Human Genome Sequencing Ctr, Houston, TX 77030 USAUniversidade Federal de São Paulo, Dept Neurol, Div Gen Neurol, BR-04021001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Neurol, Ataxia Unit, BR-04021001 São Paulo, BrazilNewcastle Univ, Inst Med Genet, Newcastle Upon Tyne NE1 3BZ, Tyne & Wear, EnglandUniversidade Federal de São Paulo, Dept Ophthalmol, BR-04021001 São Paulo, BrazilSo Gen Hosp, Dept Clin Genet, Glasgow G51 4TF, Lanark, ScotlandCardiff Univ, Sch Med, Inst Med Genet, Cardiff CF14 4XN, S Glam, WalesHadassah Hebrew Univ Med Ctr, Dept Ophthalmol, IL-91120 Jerusalem, IsraelOregon Hlth & Sci Univ, Oregon Inst Occupat Hlth Sci, Portland, OR 97239 USAUniv Wurzburg, Lehrstuhl Neurobiol & Genet, D-97074 Wurzburg, GermanyUniv Montreal, Dept Med, Montreal, PQ H3T 1P1, CanadaMcGill Univ, Dept Anat & Cell Biol, Div Expt Med, Montreal, PQ H3A 2B2, CanadaUniversidade Federal de São Paulo, Dept Neurol, Div Gen Neurol, BR-04021001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Neurol, Ataxia Unit, BR-04021001 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Ophthalmol, BR-04021001 São Paulo, BrazilNIH: EY022356-01NIH: EY018571-05NIH: NS047663-09Charles University institutional programmes: PRVOUK-P24/LF1/3Charles University institutional programmes: UNCE 204011Charles University institutional programmes: SVV2013/266504BIOCEV-Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University, from the European Regional Development Fund: CZ.1.05/1.1.00/02.0109Ministry of Health of the Czech Republic: NT13116-4/2012Ministry of Health of the Czech Republic: NT14015-3/2013Ontario Genomics Institute: OGI-049Web of Scienc

    Autism and heritable bone fragility: A true association?

    Get PDF
    Objectives: Osteogenesis Imperfecta (OI) is a heterogeneous condition mainly characterised by bone fragility; intelligence is reported to be normal. However, a minority of children seen also show symptomology consistent with an 'Autism Spectrum Disorder'. A joint genetics and psychology research study was undertaken to identify these patients using 'Gold Standard' research tools: Autism Diagnostic Inventory Revised (ADI-R); Autism Diagnostic Observation Schedule (ADOS) and undertake genetic analyses in them. Method: A cohort of n = 7 children with autistic traits and severe/complex OI were recruited to the study. The study was set-up to explore whether there was a genetic link between bone fragility and autism in a sub-set of patients with bone fragility identified with autism traits in our complex/severe OI clinic. This was not set-up as a prevalence study but rather an exploration of genetics in association with ADI/ADOS confirmed ASD and bone fragility. ADI& ADOS: Standardised tools were used to confirm autism diagnosis. ADI and ADOS were completed by the Clinical Psychologist; ADI comprises a 93 item semi-structured clinical review with a diagnostic algorithm diagnosing Autism; ADOS is a semi-structured assessment of socialisation, communication and play/imagination which also provides a diagnostic algorithm. Exome sequencing: In patients recruited, those that fulfilled research criteria for diagnosis of autism using above tools were recruited to trio whole exome sequencing (WES). Results: one patient had compound heterozygous variants in NBAS; one patient had a variant in NRX1; one patient had a maternally inherited PLS3 variant; all the other patients in this cohort had pathogenic variants in COL1A1/COL1A2. Conclusions: Although, not set out as an objective, we were able to establish that identifying autism had important clinical and social benefits for patients and their families in ensuring access to services, appropriate schooling, increased understanding of behaviour and support. Lay summary: It is important for clinicians looking after children with brittle bone disease, also referred to as Osteogenesis Imperfecta (OI) to be aware of early features of developmental delay/autistic traits especially with severe forms of OI as the emphasis is on their mobility and bone health. Ensuring appropriate assessment and access to services early-on will enable these patients to achieve their potential. Further investigations of genomics in bone fragility in relation to autism are required and dual diagnosis is essential for high quality clinical and educational provision

    Bone Material Properties in Osteogenesis Imperfecta

    Get PDF
    Osteogenesis imperfecta entrains changes at every level in bone tissue, from the disorganisation of the collagen molecules and mineral platelets within and between collagen fibrils, to the macro-architecture of the whole skeleton. Investigations using an array of sophisticated instruments at multiple scale levels have now determined many aspects of the effect of the disease on the material properties of bone tissue. The brittle nature of bone in osteogenesis imperfecta reflects both increased bone mineralisation density – the quantity of mineral in relation to the quantity of matrix within a specific bone volume – and altered matrix-matrix and matrix mineral interactions. Contributions to fracture resistance at multiple scale lengths are discussed, comparing normal and brittle bone. Integrating the available information provides both a better understanding of the effect of current approaches to treatment – largely improved architecture and possibly some macro-scale toughening - and indicates potential opportunities for alternative strategies that can influence fracture resistance at longer length scales
    corecore