2,538 research outputs found
Recovery from disturbance requires resynchronization of ecosystem nutrient cycles
Nitrogen (N) and phosphorus (P) are tightly cycled in most terrestrial ecosystems, with plant uptake more than 10 times higher than the rate of supply from deposition and weathering. This near-total dependence on recycled nutrients and the stoichiometric constraints on resource use by plants and microbes mean that the two cycles have to be synchronized such that the ratio of N:P in plant uptake, litterfall, and net mineralization are nearly the same. Disturbance can disrupt this synchronization if there is a disproportionate loss of one nutrient relative to the other. We model the resynchronization of N and P cycles following harvest of a northern hardwood forest. In our simulations, nutrient loss in the harvest is small relative to postharvest losses. The low N:P ratio of harvest residue results in a preferential release of P and retention of N. The P release is in excess of plant requirements and P is lost from the active ecosystem cycle through secondary mineral formation and leaching early in succession. Because external P inputs are small, the resynchronization of the N and P cycles later in succession is achieved by a commensurate loss of N. Through succession, the ecosystem undergoes alternating periods of N limitation, then P limitation, and eventually co-limitation as the two cycles resynchronize. However, our simulations indicate that the overall rate and extent of recovery is limited by P unless a mechanism exists either to prevent the P loss early in succession (e.g., P sequestration not stoichiometrically constrained by N) or to increase the P supply to the ecosystem later in succession (e.g., biologically enhanced weathering). Our model provides a heuristic perspective from which to assess the resynchronization among tightly cycled nutrients and the effect of that resynchronization on recovery of ecosystems from disturbance
U.S. GLOBAL CHANGE RESEARCH PROGRAM CLIMATE SCIENCE SPECIAL REPORT (CSSR)
Fifth-Order Draft
Table of Contents
Front Matter
About This Report........................................................................................ 1
Guide to the Report......................................................................................4
Executive Summary ................................................................................... 12
Chapters
1. Our Globally Changing Climate .......................................................... 38
2. Physical Drivers of Climate Change ................................................... 98
3. Detection and Attribution of Climate Change .................................... 160
4. Climate Models, Scenarios, and Projections .................................... 186
5. Large-Scale Circulation and Climate Variability ................................ 228
6. Temperature Changes in the United States ...................................... 267
7. Precipitation Change in the United States ......................................... 301
8. Droughts, Floods, and Hydrology ......................................................... 336
9. Extreme Storms ....................................................................................... 375
10. Changes in Land Cover and Terrestrial Biogeochemistry ............ 405
11. Arctic Changes and their Effects on Alaska and the Rest of the United States..... 443
12. Sea Level Rise ....................................................................................... 493
13. Ocean Acidification and Other Ocean Changes .............................. 540
14. Perspectives on Climate Change Mitigation .................................... 584
15. Potential Surprises: Compound Extremes and Tipping Elements .......... 608
Appendices
A. Observational Datasets Used in Climate Studies ............................. 636
B. Weighting Strategy for the Fourth National Climate Assessment ................ 642
C. Detection and Attribution Methodologies Overview ............................ 652
D. Acronyms and Units ................................................................................. 664
E. Glossary ...................................................................................................... 66
U.S. GLOBAL CHANGE RESEARCH PROGRAM CLIMATE SCIENCE SPECIAL REPORT (CSSR)
Fifth-Order Draft
Table of Contents
Front Matter
About This Report........................................................................................ 1
Guide to the Report......................................................................................4
Executive Summary ................................................................................... 12
Chapters
1. Our Globally Changing Climate .......................................................... 38
2. Physical Drivers of Climate Change ................................................... 98
3. Detection and Attribution of Climate Change .................................... 160
4. Climate Models, Scenarios, and Projections .................................... 186
5. Large-Scale Circulation and Climate Variability ................................ 228
6. Temperature Changes in the United States ...................................... 267
7. Precipitation Change in the United States ......................................... 301
8. Droughts, Floods, and Hydrology ......................................................... 336
9. Extreme Storms ....................................................................................... 375
10. Changes in Land Cover and Terrestrial Biogeochemistry ............ 405
11. Arctic Changes and their Effects on Alaska and the Rest of the United States..... 443
12. Sea Level Rise ....................................................................................... 493
13. Ocean Acidification and Other Ocean Changes .............................. 540
14. Perspectives on Climate Change Mitigation .................................... 584
15. Potential Surprises: Compound Extremes and Tipping Elements .......... 608
Appendices
A. Observational Datasets Used in Climate Studies ............................. 636
B. Weighting Strategy for the Fourth National Climate Assessment ................ 642
C. Detection and Attribution Methodologies Overview ............................ 652
D. Acronyms and Units ................................................................................. 664
E. Glossary ...................................................................................................... 66
Electroweak Physics, Experimental Aspects
Collider measurements on electroweak physics are summarised. Although the
precision on some observables is very high, no deviation from the Standard
Model of electroweak interactions is observed. The data allow to set stringent
limits on some models for new physics.Comment: Plenary Talk at the UK Phenomenology Workshop on Collider Physics,
Durham, 199
Laboratory evaluation of the effect of nitric acid uptake on frost point hygrometer performance
Chilled mirror hygrometers (CMH) are widely used to measure water vapour in the troposphere and lower stratosphere from balloon-borne sondes. Systematic discrepancies among in situ water vapour instruments have been observed at low water vapour mixing ratios (<5 ppm) in the upper troposphere and lower stratosphere (UT/LS). Understanding the source of the measurement discrepancies is important for a more accurate and reliable determination of water vapour abundance in this region. We have conducted a laboratory study to investigate the potential interference of gas-phase nitric acid (HNO<sub>3</sub>) with the measurement of frost point temperature, and consequently the water vapour mixing ratio, determined by CMH under conditions representative of operation in the UT/LS. No detectable interference in the measured frost point temperature was found for HNO<sub>3</sub> mixing ratios of up to 4 ppb for exposure times up to 150 min. HNO<sub>3</sub> was observed to co-condense on the mirror frost, with the adsorbed mass increasing linearly with time at constant exposure levels. Over the duration of a typical balloon sonde ascent (90–120 min), the maximum accumulated HNO<sub>3</sub> amounts were comparable to monolayer coverage of the geometric mirror surface area, which corresponds to only a small fraction of the actual frost layer surface area. This small amount of co-condensed HNO<sub>3</sub> is consistent with the observed lack of HNO<sub>3</sub> interference in the frost point measurement because the CMH utilizes significant reductions (>10%) in surface reflectivity by the condensate to determine H<sub>2</sub>O
Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes
This study was funded by the Sars Centre core budget to M. Adamska. Sequencing was performed at the Norwegian High Throughput Sequencing Centre funded by the Norwegian Research Council. O.M.R. and D.E.K.F. acknowledge support from the BBSRC and the School of Biology, University of St Andrews.Sponges are simple animals with few cell types, but their genomes paradoxically contain a wide variety of developmental transcription factors1,2,3,4, including homeobox genes belonging to the Antennapedia (ANTP) class5,6, which in bilaterians encompass Hox, ParaHox and NK genes. In the genome of the demosponge Amphimedon queenslandica, no Hox or ParaHox genes are present, but NK genes are linked in a tight cluster similar to the NK clusters of bilaterians5. It has been proposed that Hox and ParaHox genes originated from NK cluster genes after divergence of sponges from the lineage leading to cnidarians and bilaterians5,7. On the other hand, synteny analysis lends support to the notion that the absence of Hox and ParaHox genes in Amphimedon is a result of secondary loss (the ghost locus hypothesis)8. Here we analysed complete suites of ANTP-class homeoboxes in two calcareous sponges, Sycon ciliatum and Leucosolenia complicata. Our phylogenetic analyses demonstrate that these calcisponges possess orthologues of bilaterian NK genes (Hex, Hmx and Msx), a varying number of additional NK genes and one ParaHox gene, Cdx. Despite the generation of scaffolds spanning multiple genes, we find no evidence of clustering of Sycon NK genes. All Sycon ANTP-class genes are developmentally expressed, with patterns suggesting their involvement in cell type specification in embryos and adults, metamorphosis and body plan patterning. These results demonstrate that ParaHox genes predate the origin of sponges, thus confirming the ghost locus hypothesis8, and highlight the need to analyse the genomes of multiple sponge lineages to obtain a complete picture of the ancestral composition of the first animal genome.PostprintPeer reviewe
Who I Am: The Meaning of Early Adolescents’ Most Valued Activities and Relationships, and Implications for Self-Concept Research
Self-concept research in early adolescence typically measures young people’s self-perceptions of competence in specific, adult-defined domains. However, studies have rarely explored young people’s own views of valued self-concept factors and their meanings. For two major self domains, the active and the social self, this mixed-methods study identified factors valued most by 526 young people from socioeconomically diverse backgrounds in Ireland (10-12 years), and explored the meanings associated with these in a stratified subsample (n = 99). Findings indicate that self-concept scales for early adolescence omit active and social self factors and meanings valued by young people, raising questions about content validity of scales in these domains. Findings also suggest scales may under-represent girls’ active and social selves; focus too much on some school-based competencies; and, in omitting intrinsically salient self domains and meanings, may focus more on contingent (extrinsic) rather than true (intrinsic) self-esteem
Investigating knowledge management factors affecting Chinese ICT firms performance: An integrated KM framework
This is an Author's Accepted Manuscript of an article published in the Journal of Information Systems Management, 28(1), 19 - 29, 2011, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/10580530.2011.536107.This article sets out to investigate the critical factors of Knowledge Management (KM) which are considered to have an impact on the performance of Chinese information and communication technology (ICT) firms. This study confirms that the cultural environment of an enterprise is central to its success in the context of China. It shows that a collaborated, trusted, and learning environment within ICT firms will have a positive impact on their KM performance
A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms
We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 enhances ozone compared to CB05TU at all ambient levels. Although it exhibited greater overestimates at lower observed concentrations, it displayed an improved performance at higher observed concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. Any air pollution control strategies developed using the two mechanisms do not differ appreciably
- …