73 research outputs found

    Factors affecting spatiotemporal patterns of nest site selection and abundance in diamondback terrapins

    Get PDF
    Funding: Massachusetts Division of Fisheries and Wildlife Natural Heritage and Endangered Species Program.Determining what factors influence the distribution and abundance of wildlife populations is crucial for implementing effective conservation and management actions. Yet, for species with dynamic seasonal, sex-, and age-specific spatial ecology, like the diamondback terrapin (Malaclemys terrapin; DBT), doing so can be challenging. Moreover, environmental factors that influence the distribution and abundance of DBT in their northernmost range have not been quantitatively characterized. We investigated proximity to nesting habitat as one potential driver of spatiotemporal variation in abundance in a three-step analytical approach. First, we used a scale selection resource selection function (RSF) approach based on landcover data from the National Landcover Database (NLCD) to identify the scale at which DBT are selecting for (or avoiding) landcover types to nest. Next, we used RSF to predict areas of suitable nesting habitat and created an index of nest suitability (NSI). Finally, analyzing visual count data using a generalized linear mixed model (GLMM), we investigate spatiotemporal drivers of relative abundance, with a specific focus on whether similar factors affect offshore abundance and onshore nest site selection. We found the scale of selection for developed and saltmarsh land use classes to be 550 and 600 m and open water land use classes to be 100. Selection was positive for nesting areas proximal to saltmarsh habitat and negative for developed and open water. Expected relative abundance was best explained by the interaction between NSI and day of season, where expected relative abundance was greater within high NSI areas during the nesting season (2.20 individuals, CI: 1.19–3.93) compared to areas of low NSI (1.84 individuals, CI: 1.10–3.10). Our results provide evidence that inferred spatial patterns of suitable nesting habitats explain spatiotemporal patterns of terrapin movement and abundance.Publisher PDFPeer reviewe

    The First Spectrum of the Coldest Brown Dwarf

    Full text link
    The recently discovered brown dwarf WISE 0855 presents our first opportunity to directly study an object outside the Solar System that is nearly as cold as our own gas giant planets. However the traditional methodology for characterizing brown dwarfs---near infrared spectroscopy---is not currently feasible as WISE 0855 is too cold and faint. To characterize this frozen extrasolar world we obtained a 4.5-5.2 μ\mum spectrum, the same bandpass long used to study Jupiter's deep thermal emission. Our spectrum reveals the presence of atmospheric water vapor and clouds, with an absorption profile that is strikingly similar to Jupiter. The spectrum is high enough quality to allow the investigation of dynamical and chemical processes that have long been studied in Jupiter's atmosphere, but now on an extrasolar world.Comment: submitted to ApJ

    A Widely-Separated, Highly-Occluded Companion to the Nearby Low-Mass T Tauri Star TWA 30

    Get PDF
    We report the discovery of TWA 30B, a wide (~3400 AU), co-moving M dwarf companion to the nearby (~42 pc) young star TWA 30. Companionship is confirmed from their statistically consistent proper motions and radial velocities, as well as a chance alignment probability of only 0.08%. Like TWA 30A, the spectrum of TWA 30B shows signatures of an actively accreting disk (H I and alkali line emission) and forbidden emission lines tracing outflowing material ([O I], [O II], [O III], [S II], and [N II]). We have also detected [C I] emission in the optical data, marking the first such detection of this line in a pre-main sequence star. Negligible radial velocity shifts in the emission lines relative to the stellar frame of rest (Delta V < 30 km/s) indicate that the outflows are viewed in the plane of the sky and that the corresponding circumstellar disk is viewed edge-on. Indeed, TWA 30B appears to be heavily obscured by its disk, given that it is 5 magnitudes fainter than TWA 30A at K-band despite having a slightly earlier spectral type (M4 versus M5). The near-infrared spectrum of TWA 30B also evinces an excess that varies on day timescales, with colors that follow classical T Tauri tracks as opposed to variable reddening (as is the case for TWA 30A). Multi-epoch data show this excess to be well-modeled by a blackbody component with temperatures ranging from 630 to 880 K and emitting areas that scale inversely with the temperature. The variable excess may arise from disk structure such as a rim or a warp at the inner disk edge located at a radial distance of ~3-5 R_sun. As the second and third closest actively accreting and outflowing stars to the Sun (after TWA 3), TWA 30AB presents an ideal system for detailed study of star and planetary formation processes at the low-mass end of the hydrogen-burning spectrum.Comment: 34 pages, 6 figures, AJ in press; Replaced Figure 4 with a better color version, added 3 references and slightly amended Section 3.2.

    A Comparative L-dwarf Sample Exploring the Interplay Between Atmospheric Assumptions and Data Properties

    Get PDF
    © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/Comparisons of atmospheric retrievals can reveal powerful insights on the strengths and limitations of our data and modeling tools. In this paper, we examine a sample of 5 similar effective temperature (Teff) or spectral type L dwarfs to compare their pressure-temperature (P-T) profiles. Additionally, we explore the impact of an object's metallicity and the observations' signal-to-noise (SNR) on the parameters we can retrieve. We present the first atmospheric retrievals: 2MASS J15261405++2043414, 2MASS J05395200−-0059019, 2MASS J15394189−-0520428, and GD 165B increasing the small but growing number of L-dwarfs retrieved. When compared to atmospheric retrievals of SDSS J141624.08+134826.7, a low-metallicity d/sdL7 primary in a wide L+T binary, we find similar Teff sources have similar P-T profiles with metallicity differences impacting the relative offset between their P-T profiles in the photosphere. We also find that for near-infrared spectra, when the SNR is ≳80\gtrsim80 we are in a regime where model uncertainties dominate over data measurement uncertainties. As such, SNR does not play a role in the retrieval's ability to distinguish between a cloud-free and cloudless model, but may impact the confidence of the retrieved parameters. Lastly, we also discuss how to break cloud model degeneracies and the impact of extraneous gases in a retrieval model.Peer reviewe

    The Oceanus Moving Group: A New 500 Myr-Old Host for the Nearest Brown Dwarf

    Full text link
    We report the discovery of the Oceanus moving group, a ≈\approx 500 Myr-old group with 50 members and candidate members at distances 2-50 pc from the Sun using an unsupervised clustering analysis of nearby stars with Gaia DR3 data. This new moving group includes the nearest brown dwarf WISE J104915.57-531906.1 AB (Luhman 16 AB) at a distance of 2 pc, which was previously suspected to be young (600-800 Myr) based on a comparison of its dynamical mass measurements with brown dwarf evolutionary models. We use empirical color-magnitude sequences, stellar activity and gyrochronology to determine that this new group is roughly coeval with the Coma Ber open cluster, with an isochronal age of 510 ±\pm 95 Myr. This newly discovered group will be useful to refine the age and chemical composition of Luhman 16 AB, which is already one of the best substellar benchmarks known to date. Furthermore, the Oceanus moving group is one of the nearest young moving groups identified to date, making it a valuable laboratory for the study of exoplanets and substellar members, with 8 brown dwarf candidate members already identified here.Comment: Submitted to ApJ, first revision. 32 pages, 6 figures, 6 table

    Retrieval of the d/sdL7+T7.5p Binary SDSS J1416+1348AB

    Get PDF
    We present the distance-calibrated spectral energy distribution (SED) of the d/sdL7 SDSS J14162408+1348263A (J1416A) and an updated SED for SDSS J14162408+1348263B (J1416B). We also present the first retrieval analysis of J1416A using the Brewster retrieval code base and the second retrieval of J1416B. We find that the primary is best fit by a nongray cloud opacity with a power-law wavelength dependence but is indistinguishable between the type of cloud parameterization. J1416B is best fit by a cloud-free model, consistent with the results from Line et al. Most fundamental parameters derived via SEDs and retrievals are consistent within 1σ for both J1416A and J1416B. The exceptions include the radius of J1416A, where the retrieved radius is smaller than the evolutionary model-based radius from the SED for the deck cloud model, and the bolometric luminosity, which is consistent within 2.5σ for both cloud models. The pair\u27s metallicity and carbon-to-oxygen ratio point toward formation and evolution as a system. By comparing the retrieved alkali abundances while using two opacity models, we are able to evaluate how the opacities behave for the L and T dwarf. Lastly, we find that relatively small changes in composition can drive major observable differences for lower-temperature objects

    Warming seas increase cold-stunning events for Kemp’s ridley sea turtles in the northwest Atlantic

    Get PDF
    Since the 1970s, the magnitude of turtle cold-stun strandings have increased dramatically within the northwestern Atlantic. Here, we examine oceanic, atmospheric, and biological factors that may affect the increasing trend of cold-stunned Kemp’s ridleys in Cape Cod Bay, Massachusetts, United States of America. Using machine learning and Bayesian inference modeling techniques, we demonstrate higher cold-stunning years occur when the Gulf of Maine has warmer sea surface temperatures in late October through early November. Surprisingly, hatchling numbers in Mexico, a proxy for population abundance, was not identified as an important factor. Further, using our Bayesian count model and forecasted sea surface temperature projections, we predict more than 2,300 Kemp’s ridley turtles may cold-stun annually by 2031 as sea surface temperatures continue to increase within the Gulf of Maine. We suggest warmer sea surface temperatures may have modified the northerly distribution of Kemp’s ridleys and act as an ecological bridge between the Gulf Stream and nearshore waters. While cold-stunning may currently account for a minor proportion of juvenile mortality, we recommend continuing efforts to rehabilitate cold-stunned individuals to maintain population resiliency for this critically endangered species in the face of a changing climate and continuing anthropogenic threats
    • …
    corecore