118 research outputs found

    Erosion Corrosion Behavior of Nanostructure Commercial Pure Titanium in Simulated Body Fluid

    Get PDF
    To date, ECAP technique have been successfully employed to produce Ultra-fine/Nanostructure grain materials, but some materials such as hexagonal closed-packed (HCP) alloys are difficult to process by ECAP at room temperature. In this work, Transmission Electron Microscopy (TEM), Vickers hardness test and Torsion test were employed to confirm the attainment of ultrafine/nanostructured grain (UFG/NSG) commercial pure titanium (CP-Ti) Titanium fabricated by ECAP as a sever plastic deformation process. The samples were pressed by ECAP (route BC) up to four passes at elevated temperature (400° C). Finally, the Erosion-Corrosion (E-C) behavior of ultrafine/nanostructured grain (UFG/NSG) Titanium in a simulated body fluid were investigated through weight loss measurement

    Radical scavenging activity of some natural tropolones by density functional theory

    Get PDF
    The ground state neutral geometries of some natural tropolones, i.e. stipitatonic acid (AF1), stipitalide (AF2), stipitaldehydic acid (AF3) and methyl stipitate (AF4) have been optimized by using Density Functional Theory (DFT) at B3LYP/6-31G*, B3LYP/6-31G**, B3LYP/6-31+G* and B3LYP/6-31+G** levels of theory. The excited state geometries of AF1-AF4 were optimized by adopting the Time Dependent Density Functional Theory (TDDFT) at the same levels of theory. The frequencies and cation species of AF1-AF4 were also computed at all the above mentioned levels of theory. We shed light on the electro-optical and molecular properties, e.g. energy gaps, highest occupied molecular orbitals, lowest unoccupied molecular orbitals, absorption wavelengths, electronegativity (χ), hardness (η), electrophilicity (ω), softness (S), electrophilicity index (ωi) and the radical scavenging activity (RSA). Hydrogen atom transfer (HAT) and one-electron transfer mechanisms have been discussed to shed light on the RSA. The smallest ionization potential and bond dissociation energy of AF4 are revealing that this compound would have more RSA than those of other counterparts

    Projected changes in temperature and precipitation over the United States, Central America and the Caribbean in CMIP6 GCMs

    Get PDF
    The Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset is used to examine projected changes in temperature and precipitation over the United States (U.S.), Central America and the Caribbean. The changes are computed using an ensemble of 31 models for three future time slices (2021–2040, 2041–2060, and 2080–2099) relative to the reference period (1995–2014) under three Shared Socioeconomic Pathways (SSPs; SSP1-2.6, SSP2-4.5, and SSP5-8.5). The CMIP6 ensemble reproduces the observed annual cycle and distribution of mean annual temperature and precipitation with biases between − 0.93 and 1.27 °C and − 37.90 to 58.45%, respectively, for most of the region. However, modeled precipitation is too large over the western and Midwestern U.S. during winter and spring and over the North American monsoon region in summer, while too small over southern Central America. Temperature is projected to increase over the entire domain under all three SSPs, by as much as 6 °C under SSP5-8.5, and with more pronounced increases in the northern latitudes over the regions that receive snow in the present climate. Annual precipitation projections for the end of the twenty-frst century have more uncertainty, as expected, and exhibit a meridional dipole-like pattern, with precipitation increasing by 10–30% over much of the U.S. and decreasing by 10–40% over Central America and the Caribbean, especially over the monsoon region. Seasonally, precipitation over the eastern and central subregions is projected to increase during winter and spring and decrease during summer and autumn. Over the monsoon region and Central America, precipitation is projected to decrease in all seasons except autumn. The analysis was repeated on a subset of 9 models with the best performance in the reference period; however, no signifcant diference was found, suggesting that model bias is not strongly infuencing the projections.Universidad de Costa Rica/[805-B9-454]/UCR/Costa RicaNational Science Foundation/[AGS-1849654]/NSF/Estados UnidosNational Science Foundation/[AGS-1623912]/NSF/Estados UnidosDepartment of Energy/[2316‐T849‐08]/DOE/Estados UnidosNational Oceanic and Atmospheric Administration/[2316‐T849‐08]/NOAA/Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI)UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Ciencias del Mar y Limnología (CIMAR

    Synchronization of Boron application methods and rates is environmentally friendly approach to improve quality attributes of Mangifera indica L. on sustainable basis

    Get PDF
    Micronutrient deficiency in the soil is one of the major causes of mango fruit and yield's poor quality. Besides, the consumption of such a diet also causes a deficiency of micronutrients in humans. Boron deficiency adversely affects the flowering and pollen tube formation, thus decreasing mango yield and quality attributes. Soil and foliar application of B are considered a productive method to alleviate boron deficiency. A field experiment was conducted to explore the Boron most suitable method and application rate in mango under the current climatic scenario. There were nine treatments applied in three replications. The results showed that application of T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) significantly enhanced the nitrogen, potassium, proteins, ash, fats, fiber, and total soluble solids in mango as compared to the control. A significant decrease in sodium, total phenolics contents, antioxidant activity, and acidity as citric acid also validated the effective functioning of T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) as compared to control. In conclusion, T8 = RD + Borax (75 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) and T9 = RD + Borax (150 g plant -1 as a basal application) + H3 BO3 (0.8% as a foliar spray) is a potent strategy to improve the quality attributes of mango under the changing climatic situation

    Assessment of CMIP6 performance and projected temperature and precipitation changes over South America

    Get PDF
    We evaluate the performance of a large ensemble of Global Climate Models (GCMs) from the Coupled Model Intercomparison Project Phase 6 (CMIP6) over South America for a recent past reference period and examine their projections of twenty-first century precipitation and temperature changes. The future changes are computed for two time slices (2040–2059 and 2080–2099) relative to the reference period (1995–2014) under four Shared Socioeconomic Pathways (SSPs, SSP1–2.6, SSP2–4.5, SSP3–7.0 and SSP5–8.5). The CMIP6 GCMs successfully capture the main climate characteristics across South America. However, they exhibit varying skill in the spatiotemporal distribution of precipitation and temperature at the sub-regional scale, particularly over high latitudes and altitudes. Future precipitation exhibits a decrease over the east of the northern Andes in tropical South America and the southern Andes in Chile and Amazonia, and an increase over southeastern South America and the northern Andes—a result generally consistent with earlier CMIP (3 and 5) projections. However, most of these changes remain within the range of variability of the reference period. In contrast, temperature increases are robust in terms of magnitude even under the SSP1–2.6. Future changes mostly progress monotonically from the weakest to the strongest forcing scenario, and from the mid-century to late-century projection period. There is an increase in the seasonality of the intra-annual precipitation distribution, as the wetter part of the year contributes relatively more to the annual total. Furthermore, an increasingly heavy-tailed precipitation distribution and a rightward shifted temperature distribution provide strong indications of a more intense hydrological cycle as greenhouse gas emissions increase. The relative distance of an individual GCM from the ensemble mean does not substantially vary across different scenarios. We found no clear systematic linkage between model spread about the mean in the reference period and the magnitude of simulated sub-regional climate change in the future period. Overall, these results could be useful for regional climate change impact assessments across South America

    Global, regional, and national burden of colorectal cancer and its risk factors, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Funding: F Carvalho and E Fernandes acknowledge support from Fundação para a Ciência e a Tecnologia, I.P. (FCT), in the scope of the project UIDP/04378/2020 and UIDB/04378/2020 of the Research Unit on Applied Molecular Biosciences UCIBIO and the project LA/P/0140/2020 of the Associate Laboratory Institute for Health and Bioeconomy i4HB; FCT/MCTES through the project UIDB/50006/2020. J Conde acknowledges the European Research Council Starting Grant (ERC-StG-2019-848325). V M Costa acknowledges the grant SFRH/BHD/110001/2015, received by Portuguese national funds through Fundação para a Ciência e Tecnologia (FCT), IP, under the Norma Transitória DL57/2016/CP1334/CT0006.proofepub_ahead_of_prin
    corecore