26 research outputs found

    A Polyphenol-Enriched Supplement Exerts Potent Epigenetic-Protective Activity in a Cell-Based Model of Brain Ischemia

    Get PDF
    Bioactive components, due in part to their epigenetic properties, are beneficial for preventing several human diseases including cerebrovascular pathologies. However, no clear demonstration supports the idea that these molecules still conserve their epigenetic effects when acting at very low concentrations reproducing the brain levels achieved after oral administration of a micronutrient supplement. In the present study, we used a cellular model of brain ischemia to investigate the neuroprotective and epigenetic activities of a commercially available micronutrient mixture (polyphenol-enriched micronutrient mixture, PMM) enriched in polyphenols ((-)-epigallocatechin-3-gallate, quercetin, resveratrol), α-lipoic acid, vitamins, amino acids and other micronutrients. Mimicking the suggested dietary supplementation, primary cultures of mouse cortical neurons were pre-treated with PMM and then subjected to oxygen glucose deprivation (OGD). Pre-treatment with PMM amounts to provide bioactive components in the medium in the nanomolar range potently prevented neuronal cell death. The protection was associated with the deacetylation of the lysin 310 (K310) on NF-ÎșB/RelA as well as the deacetylation of H3 histones at the promoter of Bim, a pro-apoptotic target of ac-RelA(K310) in brain ischemia. Epigenetic regulators known to shape the acetylation state of ac-RelA(K310) moiety are the histone acetyl transferase CBP/p300 and the class III histone deacetylase sirtuin-1. In view of that evidence, the protection we here report unveils the efficacy of bioactive components endowed with either inhibitory activity on CBP/p300 or stimulating activity on the AMP-activated protein kinase⁻sirtuin 1 pathway. Our results support a potential synergistic effect of micronutrients in the PMM, suggesting that the intake of a polyphenol-based micronutrient mixture can reduce neuronal vulnerability to stressful conditions at concentrations compatible with the predicted brain levels reached by a single constituent after an oral dose of PMM

    Mild inflammatory profile without gliosis in the c-rel deficient mouse modeling a late-onset parkinsonism

    Get PDF
    The impact of neuroinflammation and microglial activation to Parkinson’s disease (PD) progression is still debated. Post-mortem analysis of PD brains has shown that neuroinflammation and microgliosis are key features of end-stage disease. However, microglia neuroimaging studies and evaluation of cerebrospinal fluid (CSF) cytokines in PD patients at earlier stages do not support the occurrence of a pronounced neuroinflammatory process. PD animal models recapitulating the motor and non-motor features of the disease, and the slow and progressive neuropathology, can be of great advantage in understanding whether and how neuroinflammation associates with the onset of symptoms and neuronal loss. We recently described that 18-month-old NF-ÎșB/c-Rel deficient mice (c-rel−/−) develop a spontaneous late-onset PD-like phenotype encompassing L-DOPA-responsive motor impairment, nigrostriatal neuron degeneration, α-synuclein and iron accumulation. To assess whether inflammation and microglial activation accompany the onset and the progression of PD-like pathology, we investigated the expression of cytokines (interleukin 1 beta (Il1b), interleukin 6 (Il6)) and microglial/macrophage activation markers (Fc gamma receptor III (Fcgr3), mannose receptor 1 (Mrc1), chitinase-like 3 (Ym1), arginase 1 (Arg 1), triggering receptor expressed on myeloid cells 2 (Trem2)), together with microglial ionized calcium binding adapter molecule 1 (Iba1) and astrocyte glial fibrillary acidic protein (GFAP) immunolabeling, in the substantia nigra (SN) of c-rel−/− mice, at premotor (4- and 13-month-old) and motor phases (18-month-old). By quantitative real-time RT-PCR we found increased M2c microglial/macrophage markers expression (Mrc1 and Arg1) in 4-month-old c-rel−/− mice. M2-type transcription dropped down in 13-month-old c-rel−/− mice. At this age, the pro-inflammatory Il1b, but not Il6 or the microglia-macrophage M1-polarization marker Fcgr3/CD16, increased when compared to wild-type (wt). Furthermore, no significant variation in the transcription of inflammatory and microglial/macrophage activation genes was present in 18-month-old c-rel−/− mice, that display motor dysfunctions and dopaminergic neuronal loss. Immunofluorescence analysis of Iba1-positive cells in the SN revealed no sign of overt microglial activation in c-rel−/− mice at all the time-points. MRC1-Iba1-positive cells were identified as non-parenchymal macrophages in 4-month-old c-rel−/− mice. Finally, no sign of astrogliosis was detected in the SN of the diverse animal groups. In conclusion, this study supports the presence of a mild inflammatory profile without evident signs of gliosis in c-rel−/− mice up to 18 months of age. It suggests that symptomatic PD-like phenotype can develop in the absence of concomitant severe inflammatory process

    Synergistic association of valproate and resveratrol reduces brain injury in ischemic stroke

    Get PDF
    Histone deacetylation, together with altered acetylation of NF-ÎșB/RelA, encompassing the K310 residue acetylation, occur during brain ischemia. By restoring the normal acetylation condition, we previously reported that sub-threshold doses of resveratrol and entinostat (MS-275), respectively, an activator of the AMP-activated kinase (AMPK)-sirtuin 1 pathway and an inhibitor of class I histone deacetylases (HDACs), synergistically elicited neuroprotection in a mouse model of ischemic stroke. To improve the translational power of this approach, we investigated the efficacy of MS-275 replacement with valproate, the antiepileptic drug also reported to be a class I HDAC blocker. In cortical neurons previously exposed to oxygen glucose deprivation (OGD), valproate elicited neuroprotection at 100 nmol/mL concentration when used alone and at 1 nmol/mL concentration when associated with resveratrol (3 nmol/mL). Resveratrol and valproate restored the acetylation of histone H3 (K9/18), and they reduced the RelA(K310) acetylation and the Bim level in neurons exposed to OGD. Chromatin immunoprecipitation analysis showed that the synergistic drug association impaired the RelA binding to the Bim promoter, as well as the promoter-specific H3 (K9/18) acetylation. In mice subjected to 60 min of middle cerebral artery occlusion (MCAO), the association of resveratrol 680 ”g/kg and valproate 200 ”g/kg significantly reduced the infarct volume as well as the neurological deficits. The present study suggests that valproate and resveratrol may represent a promising ready-to-use strategy to treat post-ischemic brain damage

    The dust environment of comet 67P/Churyumov-Gerasimenko from Rosetta OSIRIS and VLT observations in the 4.5 to 2.9 au heliocentric distance range inbound

    Get PDF
    Context. The ESA Rosetta spacecraft, currently orbiting around cornet 67P/Churyumov-Gerasimenko, has already provided in situ measurements of the dust grain properties from several instruments, particularly OSIRIS and GIADA. We propose adding value to those measurements by combining them with ground-based observations of the dust tail to monitor the overall, time-dependent dust-production rate and size distribution. Aims. To constrain the dust grain properties, we take Rosetta OSIRIS and GIADA results into account, and combine OSIRIS data during the approach phase (from late April to early June 2014) with a large data set of ground-based images that were acquired with the ESO Very Large Telescope (VLT) from February to November 2014. Methods. A Monte Carlo dust tail code, which has already been used to characterise the dust environments of several comets and active asteroids, has been applied to retrieve the dust parameters. Key properties of the grains (density, velocity, and size distribution) were obtained from. Rosetta observations: these parameters were used as input of the code to considerably reduce the number of free parameters. In this way, the overall dust mass-loss rate and its dependence on the heliocentric distance could be obtained accurately. Results. The dust parameters derived from the inner coma measurements by OSIRIS and GIADA and from distant imaging using VLT data are consistent, except for the power index of the size-distribution function, which is alpha = -3, instead of alpha = -2, for grains smaller than 1 mm. This is possibly linked to the presence of fluffy aggregates in the coma. The onset of cometary activity occurs at approximately 4.3 AU, with a dust production rate of 0.5 kg/s, increasing up to 15 kg/s at 2.9 AU. This implies a dust-to-gas mass ratio varying between 3.8 and 6.5 for the best-fit model when combined with water-production rates from the MIRO experiment

    The Comet Interceptor Mission

    Get PDF
    Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum ΔV capability of 600 ms−1. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule

    Synergistic Association of Valproate and Resveratrol Reduces Brain Injury in Ischemic Stroke

    No full text
    Histone deacetylation, together with altered acetylation of NF-ÎșB/RelA, encompassing the K310 residue acetylation, occur during brain ischemia. By restoring the normal acetylation condition, we previously reported that sub-threshold doses of resveratrol and entinostat (MS-275), respectively, an activator of the AMP-activated kinase (AMPK)-sirtuin 1 pathway and an inhibitor of class I histone deacetylases (HDACs), synergistically elicited neuroprotection in a mouse model of ischemic stroke. To improve the translational power of this approach, we investigated the efficacy of MS-275 replacement with valproate, the antiepileptic drug also reported to be a class I HDAC blocker. In cortical neurons previously exposed to oxygen glucose deprivation (OGD), valproate elicited neuroprotection at 100 nmol/mL concentration when used alone and at 1 nmol/mL concentration when associated with resveratrol (3 nmol/mL). Resveratrol and valproate restored the acetylation of histone H3 (K9/18), and they reduced the RelA(K310) acetylation and the Bim level in neurons exposed to OGD. Chromatin immunoprecipitation analysis showed that the synergistic drug association impaired the RelA binding to the Bim promoter, as well as the promoter-specific H3 (K9/18) acetylation. In mice subjected to 60 min of middle cerebral artery occlusion (MCAO), the association of resveratrol 680 ”g/kg and valproate 200 ”g/kg significantly reduced the infarct volume as well as the neurological deficits. The present study suggests that valproate and resveratrol may represent a promising ready-to-use strategy to treat post-ischemic brain damage
    corecore