1,629 research outputs found
Nonresidential Fathers Parenting Their Children Residing in Shelters: A Phenomenological Study
This phenomenological qualitative study explored the parenting role of nonresidential fathers of children living in shelters. Special attention was paid to the perceived contributions of these fathers to the overall health and general well-being of their children residing in shelters. Often separations of nonresidential fathers from their children in shelters decreased their contributions to their children\u27s health and well-being. Increased knowledge of these parental roles and contributions can enhance programs and policies to support these fathers in improving the health and well-being of their children. In-depth semistructured interviews were conducted with 6 demographically diverse nonresidential fathers living in Philadelphia. The health-belief model, in conjunction with the revised health-belief model, was used as a theoretical framework for this study. The research questions were designed to explore nonresidential fathers\u27 parenting roles, perceptions of their contributions, and the facilitators of and barriers to their parenting while their children resided in shelters. An inductive approach to data analysis informed study findings of nonresidential fathers\u27 active participation and engagement in their children\u27s lives, including involvement in their healthcare and health promotion. Perceived facilitators to their parenting role included internal and external motivators, whereas perceived challenges and barriers to their parenting role were externally based. Finally, study findings showed these fathers to be present and making significant contributions to the improved health and overall well-being of their children while they resided in homeless shelters
Surface and subsurface rolling contact fatigue characteristic depths and proposal of stress indexes
The rolling contact fatigue is distinguished into subsurface initiated (spalling and case crushing) and surface initiated (pitting and micropitting). A characteristic depth was identified for each of these mechanism. The characteristic depth of the case crushing is the hardening depth, while for the spalling it is the maximum cyclic shear stress depth. The pitting depth is the size of the crack for which the mode I stress intensity factor range, due to the fluid pressurization, is higher than the threshold. This depth can be similar to the micropitting depth, in the order of 10 ”m, for heavily loaded small radius contacts. Rolling contact fatigue cyclic shear stress indexes are then defined on the basis of the characteristic depths, and they identify the load intensity of each rolling contact fatigue mechanism. The characteristic depths and the stress index approach can be used to relate specific tests to component design, without any size effect misinterpretation
A new clinical tool for assessing numerical abilities in neurological diseases: numerical activities of daily living
The aim of this study was to build an instrument, the numerical activities of daily living (NADL), designed to identify the specific impairments in numerical functions that may cause problems in everyday life. These impairments go beyond what can be inferred from the available scales evaluating activities of daily living in general, and are not adequately captured by measures of the general deterioration of cognitive functions as assessed by standard clinical instruments like the MMSE and MoCA. We assessed a control group (n = 148) and a patient group affected by a wide variety of neurological conditions (n = 175), with NADL along with IADL, MMSE, and MoCA. The NADL battery was found to have satisfactory construct validity and reliability, across a wide age range. This enabled us to calculate appropriate criteria for impairment that took into account age and education. It was found that neurological patients tended to overestimate their abilities as compared to the judgment made by their caregivers, assessed with objective tests of numerical abilities
Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol
For oceans to be a significant source of primary organic aerosol (POA), sea spray aerosol (SSA) must be highly enriched with organics relative to the bulk seawater. We propose that organic enrichment at the air-sea interface, chemical composition of seawater, and the aerosol size are three main parameters controlling the organic mass fraction of sea spray aerosol (OM<sub>SSA</sub>). To test this hypothesis, we developed a new marine POA emission function based on a conceptual relationship between the organic enrichment at the air-sea interface and surface wind speed. The resulting parameterization is explored using aerosol chemical composition and surface wind speed from Atlantic and Pacific coastal stations, and satellite-derived ocean concentrations of chlorophyll-<i>a</i>, dissolved organic carbon, and particulate organic carbon. Of all the parameters examined, a multi-variable logistic regression revealed that the combination of 10 m wind speed and surface chlorophyll-<i>a</i> concentration ([Chl-<i>a</i>]) are the most consistent predictors of OM<sub>SSA</sub>. This relationship, combined with the published aerosol size dependence of OM<sub>SSA</sub>, resulted in a new parameterization for the organic mass fraction of SSA. Global emissions of marine POA are investigated here by applying this newly-developed relationship to existing sea spray emission functions, satellite-derived [Chl-<i>a</i>], and modeled 10 m winds. Analysis of model simulations shows that global annual submicron marine organic emission associated with sea spray is estimated to be from 2.8 to 5.6 Tg C yr<sup>â1</sup>. This study provides additional evidence that marine primary organic aerosols are a globally significant source of organics in the atmosphere
Relation of air mass history to nucleation events in Po Valley, Italy, using back trajectories analysis
International audienceIn this paper, we study the transport of air masses to San Pietro Capofiume (SPC) in Po Valley, Italy, by means of back trajectories analysis. Our main aim is to investigate whether air masses originate over different regions on nucleation event days and on nonevent days, during three years when nucleation events have been continuously recorded at SPC. The results indicate that nucleation events occur frequently in air masses arriving from Central Europe, whereas event frequency is much lower in the air transported from southern directions and from the Atlantic Ocean. We also analyzed the behaviour of meteorological parameters during 96 h transport to SPC, and found that, on average, event trajectories undergo stronger subsidence during the last 12 h before the arrival at SPC than nonevent trajectories. This causes a reversal in the temperature and relative humidity (RH) differences between event and nonevent trajectories: between 96 and 12 h back time, temperature is lower and RH is higher for event than nonevent trajectories and between 12 and 0 h vice versa. Boundary layer mixing is stronger along the event trajectories compared to nonevent trajectories. The absolute humidity (AH) is similar for the event and nonevent trajectories between about 96 h and about 60 h back time, but after that, the event trajectories AH becomes lower due to stronger rain. We also studied transport of SO2 to SPC, and conclude that although sources in Po Valley most probably dominate the measured concentrations, certain Central and Eastern European sources also make a substantial contribution
Exploring the dimming event of RW Aur A through multi-epoch VLT/X-Shooter spectroscopy
RW Aur A is a CTTS that has suddenly undergone three major dimming events
since 2010. We aim to understand the dimming properties, examine accretion
variability, and derive the physical properties of the inner disc traced by the
CO ro-vibrational emission at NIR wavelengths (2.3 mic).
We compared two epochs of X-Shooter observations, during and after the
dimming. We modelled the rarely detected CO bandhead emission in both epochs to
examine whether the inner disc properties had changed. The SED was used to
derive the extinction properties of the dimmed spectrum and compare the
infrared excess between the two epochs. Lines tracing accretion were used to
derive the mass accretion rate in both states. The CO originates from a region
with physical properties of T=3000 K, N=1x10 cm and
vsini=113 km/s. The extinction properties of the dimming layer were derived
with the effective optical depth ranging from teff 2.5-1.5 from the UV to the
NIR. The inferred mass accretion rate Macc is Msun/yr and Msun/yr after and during the dimming respectively. By fitting the
SED, additional emission is observed in the IR during the dimming event from
dust grains with temperatures of 500-700K. The physical conditions traced by
the CO are similar for both epochs, indicating that the inner gaseous disc
properties do not change during the dimming events. The extinction curve is
flatter than that of the ISM, and large grains of a few hundred microns are
thus required. When we correct for the observed extinction, Macc is constant in
the two epochs, suggesting that the accretion is stable and therefore does not
cause the dimming. The additional hot emission in the NIR is located at about
0.5 au from the star. The dimming events could be due to a dust-laden wind, a
severe puffing-up of the inner rim, or a perturbation caused by the recent
star-disc encounter.Comment: Accepted by Astronomy & Astrophysic
High-resolution observations of molecular emission lines toward the CI Tau proto-planetary disc: Planet-carved gaps or shadowing?
Recent observations have revealed that most proto-planetary discs show a
pattern of bright rings and dark gaps. However, most of the high-resolution
observations have focused only on the continuum emission. In this Paper we
present high-resolution ALMA band 7 (0.89mm) observations of the disc around
the star CI Tau in the CO & CO -2 and CS -6 emission
lines. Our recent work demonstrated that the disc around CI Tau contains three
gaps and rings in continuum emission, and we look for their counterparts in the
gas emission. While we find no counterpart of the third gap and ring in
CO, the disc has a gap in emission at the location of the second
continuum ring (rather than gap). We demonstrate that this is mostly an
artefact of the continuum subtraction, although a residual gap still remains
after accounting for this effect. Through radiative transfer modelling we
propose this is due to the inner disc shadowing the outer parts of the disc and
making them colder. This raises a note of caution in mapping high-resolution
gas emission lines observations to the gas surface density - while possible,
this needs to be done carefully. In contrast to CO, CS emission shows
instead a ring morphology, most likely due to chemical effects. Finally, we
note that CO is heavily absorbed by the foreground preventing any
morphological study using this line
Lidar and in situ observations of continental and Saharan aerosol: closure analysis of particles optical and physical properties
Single wavelength polarization lidar observations collected at Mt. Cimone (44.2Âș N, 10.7Âș E, 1870 m a.s.l.) during the June 2000 MINATROC campaign are analyzed to derive tropospheric profiles of aerosol extinction, depolarization, surface area and volume. Lidar retrievals for the 2170-2245 m level are compared to the same variables as computed from in situ measurements of particles size distributions, performed at the mountain top Station (2165 m a.s.l.) by a differential mobility analyzer (DMA) and an optical particle counter (OPC). A sensitivity analysis of this closure experiment shows that mean relative differences between the backscatter coefficients obtained by the two techniques undergo a sharp decrease when hygroscopic growth to ambient humidity is considered for the DMA dataset, otherwise representative of dry aerosols. Minimization of differences between lidar and size distribution-derived backscatter coefficients allowed to find values of the "best" refractive index, specific to each measurement. These results show the refractive index to increase for air masses proceeding from Africa and Western Europe. Lidar depolarization was observed to minimize mainly in airmasses proceeding from Western Europe, thus indicating a spherical, i.e. liquid nature for such aerosols. Conversely, African, Mediterranean and East Europe aerosol showed a larger depolarizing fraction, mainly due to coexisting refractory and soluble fractions. The analysis shows average relative differences between lidar and in-situ observations of 5% for backscatter, 36% for extinction 41% for surface area and 37% for volume. These values are well within the expected combined uncertainties of the lidar and in situ retrievals. Average differences further decrease during the Saharan dust transport event, when a lidar signal inversion model considering non-spherical scatterers is employed. The quality of the closure obtained between particle counter and lidar-derived aerosol surface area and volume observations constitutes a validation of the technique adopted to retrieve such aerosol properties on the basis of single-wavelength lidar observations
- âŠ