169 research outputs found

    Neogene-Quaternary intraforeland transpression along a Mesozoic platform-basin margin: The Gargano fault system, Adria, Italy

    Get PDF
    We analyzed field structural data and an offshore seismic-reflection profile and compared them with previously published geological and geophysical data to constrain the tectonic evolution of the Gargano fault system, the kinematics of which have been the subject of contradictory interpretations. Field analyses show that the Gargano fault system consists of NW- to W-striking folds, thrusts, and left-lateral transpressional and strike-slip faults. A set of NW-striking solution cleavage supports the inference of an overall left-lateral kinematic regime for the Gargano fault system. Some synsedimentary structures indicate Miocene-Pliocene contractional and transpressional activity along the Gargano fault system, whereas strike-slip faults affecting Pleistocene conglomerates support a recent, left-lateral, strike-slip activity. The seismic-reflection data show that the offshore prolongation of the Gargano fault system consists of an anticline cut by high-angle faults arranged in a positive flower-like structure, which has mostly grown since middle-late Miocene times along a Mesozoic platform-basin margin. We have schematically reconstructed the tectonic evolution of the Gargano fault system between the middle-late Miocene and the present day. During this period, the Gargano fault system has mostly accommodated contractional to left-lateral transpressional and strike-slip displacements. These displacements are consistent with the regional, Neogene-Quaternary, contractional tectonics across Adria and the Apennines and Dinarides-Albanides fold-and-thrust belts. Some evidence suggests that the Gargano fault system is presently accommodating extensional or left-lateral transtensional displacements. We interpret the Neogene-Quaternary, strike-slip displacements on the Gargano fault system to be connected with the segmentation of the subducted Adriatic slab beneath the Apennines fold-and-thrust belt and with the noncylindrical evolution of this slab (i.e., differential retreating motions), which has undergone differential flexural movements in the adjacent, northern and southern Adriatic compartments

    Le politiche di sviluppo rurale nell´unione europea: un secondo pilastro tutto da inventare

    Get PDF
    This paper provides an analysis of the evolution of EU common rural development policy together with an assessment of the state of the art in the implementation of such policy in Italy during 2000-2006 programming period. Within this framework financing agriculture and farmers is still at the centre of the intervention, but the more general support to the rural areas is of increasing importance. The last objective is pursued through the implementation of traditional measures as well as of “bottom up” programmes (that is the Leader initiative). This paper gives an overview on the main measures aimed at these objectives, focusing both on the underlying EC regulation and on the main specificities and problems linked to their implementation. A further objective of the paper is drawing lessons and policy recommendations for future experiences, which need for a coordinated approach at European, national and regional level. In this framework, the definition of new institutional arrangements really capable of delivering rural policies where they are needed is crucial. Participative approaches like Leader can help the design and the delivery of strategies fitting specific territorial needs.Governance, Agricultural policy, Rural areas

    Lung ultrasound features and relationships with respiratory mechanics of evolving BPD in preterm rabbits and human neonates

    Get PDF
    Evolving bronchopulmonary dysplasia (BPD) is characterized by impaired alveolarization leading to lung aeration inhomogeneities. Hyperoxia-exposed preterm rabbits have been proposed to mimic evolving BPD; therefore, we aimed to verify if this model has the same lung ultrasound and mechanical features of evolving BPD in human neonates. Semiquantitative lung ultrasound and lung mechanics measurement was performed in 25 preterm rabbits (28days of gestation) and 25 neonates (mean gestational age approximate to 26wk) with evolving BPD. A modified rabbit lung ultrasound score (rLUS) and a validated neonatal lung ultrasound score (WS) were used. Lung ultrasound images were recorded and evaluated by two independent observers blinded to each other's evaluation. Lung ultrasound findings were equally heterogeneous both in rabbits as in human neonates and encompassed all the classical lung ultrasound semiology. Lung ultrasound and histology examination were also performed in 13 term rabbits kept under normoxia as further control and showed the absence of ultrasound and histology abnormalities compared with hyperoxia-exposed preterm rabbits. The interrater absolute agreement for the evaluation of lung ultrasound images in rabbits was very high [ICC: 0.989 (95%Cl: 0.975-0.995); P < 0.0001], and there was no difference between the two observers. Lung mechanics parameters were similarly altered in both rabbits and human neonates. There were moderately significant correlations between airway resistances and lung ultrasound scores in rabbits (rho = 0.519; P = 0.008) and in neonates (rho = 0.409; P = 0.042). In conclusion, the preterm rabbit model fairly reproduces the lung ultrasound and mechanical characteristics of preterm neonates with evolving BPD.NEW & NOTEWORTHY We have reported that hyperoxia-exposed preterm rabbits and human preterm neonates with evolving BPD have the same lung ultrasound appearance, and that lung ultrasound can be fruitfully applied on this model with a brief training. The animal model and human neonates also presented the same relationship between semiquantitative ultrasound-assessed lung aeration and airway resistances. In conclusion, this animal model fairly reproduce evolving BPD as it is seen in clinical practice

    Una estrategia de acoplamiento conservativa y monótona para mallas no coincidentes en problemas multifísica particionados

    Get PDF
    Las simulaciones numéricas de problemas multifísica se han vuelto populares en una gran cantidad de aplicaciones ingenieriles, tales como las simulaciones de problemas de interacción fluidoestructura. Como la complejidad de tales simulaciones ha aumentado debido a la introducción de otros fenómenos físicos, como los termodinámicos y los acústicos, es conveniente considerar estrategias de solución particionadas con el fin de reutilizar algoritmos (denominados solvers) específicos son capaces de resolver tales problemas independientemente, sin introducir mayores modificaciones a los códigos. En éste escenario, es deseable poder utilizar diferentes discretizaciones para cada subdominio del problema. Sin embargo, esto introduce la necesidad de proyectar soluciones desde la interfaz de un subdominio a otro, para transferir los desplazamientos y velocidades de los contornos de los subdominios y sincronizar los solvers. Por lo tanto, en este trabajo un esquema de proyección monótono y conservativo es introducido y utilizado para acoplar un solver computacional de dinámica de fluidos y uno de dinámica de estructuras. La precisión y consistencia, así como también las propiedades de conservación y monotonicidad, serán evaluadas sobre dominios 2D cuyas interfaces de interacción son 1D. Finalmente se hará un análisis de las fortalezas y debilidades presentes en el algoritmo de proyección de soluciones.Publicado en: Mecánica Computacional vol. XXXV, no. 26Facultad de Ingenierí

    Multiple Myeloma Treatment in Real-world Clinical Practice : Results of a Prospective, Multinational, Noninterventional Study

    Get PDF
    Funding Information: The authors would like to thank all patients and their families and all the EMMOS investigators for their valuable contributions to the study. The authors would like to acknowledge Robert Olie for his significant contribution to the EMMOS study. Writing support during the development of our report was provided by Laura Mulcahy and Catherine Crookes of FireKite, an Ashfield company, a part of UDG Healthcare plc, which was funded by Millennium Pharmaceuticals, Inc, and Janssen Global Services, LLC. The EMMOS study was supported by research funding from Janssen Pharmaceutical NV and Millennium Pharmaceuticals, Inc. Funding Information: The authors would like to thank all patients and their families and all the EMMOS investigators for their valuable contributions to the study. The authors would like to acknowledge Robert Olie for his significant contribution to the EMMOS study. Writing support during the development of our report was provided by Laura Mulcahy and Catherine Crookes of FireKite, an Ashfield company, a part of UDG Healthcare plc, which was funded by Millennium Pharmaceuticals, Inc, and Janssen Global Services, LLC. The EMMOS study was supported by research funding from Janssen Pharmaceutical NV and Millennium Pharmaceuticals, Inc. Funding Information: M.M. has received personal fees from Janssen, Celgene, Amgen, Bristol-Myers Squibb, Sanofi, Novartis, and Takeda and grants from Janssen and Sanofi during the conduct of the study. E.T. has received grants from Janssen and personal fees from Janssen and Takeda during the conduct of the study, and grants from Amgen, Celgene/Genesis, personal fees from Amgen, Celgene/Genesis, Bristol-Myers Squibb, Novartis, and Glaxo-Smith Kline outside the submitted work. M.V.M. has received personal fees from Janssen, Celgene, Amgen, and Takeda outside the submitted work. M.C. reports honoraria from Janssen, outside the submitted work. M. B. reports grants from Janssen Cilag during the conduct of the study. M.D. has received honoraria for participation on advisory boards for Janssen, Celgene, Takeda, Amgen, and Novartis. H.S. has received honoraria from Janssen-Cilag, Celgene, Amgen, Bristol-Myers Squibb, Novartis, and Takeda outside the submitted work. V.P. reports personal fees from Janssen during the conduct of the study and grants, personal fees, and nonfinancial support from Amgen, grants and personal fees from Sanofi, and personal fees from Takeda outside the submitted work. W.W. has received personal fees and grants from Amgen, Celgene, Novartis, Roche, Takeda, Gilead, and Janssen and nonfinancial support from Roche outside the submitted work. J.S. reports grants and nonfinancial support from Janssen Pharmaceutical during the conduct of the study. V.L. reports funding from Janssen Global Services LLC during the conduct of the study and study support from Janssen-Cilag and Pharmion outside the submitted work. A.P. reports employment and shareholding of Janssen (Johnson & Johnson) during the conduct of the study. C.C. reports employment at Janssen-Cilag during the conduct of the study. C.F. reports employment at Janssen Research and Development during the conduct of the study. F.T.B. reports employment at Janssen-Cilag during the conduct of the study. The remaining authors have stated that they have no conflicts of interest. Publisher Copyright: © 2018 The AuthorsMultiple myeloma (MM) remains an incurable disease, with little information available on its management in real-world clinical practice. The results of the present prospective, noninterventional observational study revealed great diversity in the treatment regimens used to treat MM. Our results also provide data to inform health economic, pharmacoepidemiologic, and outcomes research, providing a framework for the design of protocols to improve the outcomes of patients with MM. Background: The present prospective, multinational, noninterventional study aimed to document and describe real-world treatment regimens and disease progression in multiple myeloma (MM) patients. Patients and Methods: Adult patients initiating any new MM therapy from October 2010 to October 2012 were eligible. A multistage patient/site recruitment model was applied to minimize the selection bias; enrollment was stratified by country, region, and practice type. The patient medical and disease features, treatment history, and remission status were recorded at baseline, and prospective data on treatment, efficacy, and safety were collected electronically every 3 months. Results: A total of 2358 patients were enrolled. Of these patients, 775 and 1583 did and did not undergo stem cell transplantation (SCT) at any time during treatment, respectively. Of the patients in the SCT and non-SCT groups, 49%, 21%, 14%, and 15% and 57%, 20%, 12% and 10% were enrolled at treatment line 1, 2, 3, and ≥ 4, respectively. In the SCT and non-SCT groups, 45% and 54% of the patients had received bortezomib-based therapy without thalidomide/lenalidomide, 12% and 18% had received thalidomide/lenalidomide-based therapy without bortezomib, and 30% and 4% had received bortezomib plus thalidomide/lenalidomide-based therapy as frontline treatment, respectively. The corresponding proportions of SCT and non-SCT patients in lines 2, 3, and ≥ 4 were 45% and 37%, 30% and 37%, and 12% and 3%, 33% and 27%, 35% and 32%, and 8% and 2%, and 27% and 27%, 27% and 23%, and 6% and 4%, respectively. In the SCT and non-SCT patients, the overall response rate was 86% to 97% and 64% to 85% in line 1, 74% to 78% and 59% to 68% in line 2, 55% to 83% and 48% to 60% in line 3, and 49% to 65% and 36% and 45% in line 4, respectively, for regimens that included bortezomib and/or thalidomide/lenalidomide. Conclusion: The results of our prospective study have revealed great diversity in the treatment regimens used to manage MM in real-life practice. This diversity was linked to factors such as novel agent accessibility and evolving treatment recommendations. Our results provide insight into associated clinical benefits.publishersversionPeer reviewe

    Impact of ephemeral cataclastic fabrics on laser diffraction particle size distribution analysis in loose carbonate fault breccia.

    No full text

    Particle shape evolution in natural carbonate granular wear material

    No full text

    Predicting pre- and post-failure stress conditions and deformation patterns in fault zones by the FRAP numerical tool

    No full text
    Faults show strongly variable lateral permeability, largely dependent from the variability of amount of deformation along them. Several well-exposed examples confirm the difficulty in the task of predicting fault permeability. The development of fault deformation zones and fault cores, including fault gauge and cataclastic bands, is a function of several variables, including rock rheology, stress and strength conditions along the fault surface, fluid pressures, and the fault kinematics. Once you know the appropriate boundary conditions, analytical equations allow to compute an index of fault gauge formation at any point, as well as the geometry and type of expected (brittle) deformations. Due to the variability of the aforementioned values, a critical parameter is the displacement (amount and path) on the fault surface. This was be numerically integrated to properly predict the zones where higher deformation is expected. These computations were included in the FRAP numerical tool, including multiple event and multiple fault settings. External structural data can also be integrated in the computation, allowing to properly tune the prediction. Examples of applications includes the study of the variation of fault permeability in geothermal environment, as well as the modelling of the expected permeability in a grid of extensional faults in oil reservoirs
    corecore