8 research outputs found
Concerted Action of Two Formins in Gliding Motility and Host Cell Invasion by Toxoplasma gondii
The invasive forms of apicomplexan parasites share a conserved form of gliding motility that powers parasite migration across biological barriers, host cell invasion and egress from infected cells. Previous studies have established that the duration and direction of gliding motility are determined by actin polymerization; however, regulators of actin dynamics in apicomplexans remain poorly characterized. In the absence of a complete ARP2/3 complex, the formin homology 2 domain containing proteins and the accessory protein profilin are presumed to orchestrate actin polymerization during host cell invasion. Here, we have undertaken the biochemical and functional characterization of two Toxoplasma gondii formins and established that they act in concert as actin nucleators during invasion. The importance of TgFRM1 for parasite motility has been assessed by conditional gene disruption. The contribution of each formin individually and jointly was revealed by an approach based upon the expression of dominant mutants with modified FH2 domains impaired in actin binding but still able to dimerize with their respective endogenous formin. These mutated FH2 domains were fused to the ligand-controlled destabilization domain (DD-FKBP) to achieve conditional expression. This strategy proved unique in identifying the non-redundant and critical roles of both formins in invasion. These findings provide new insights into how controlled actin polymerization drives the directional movement required for productive penetration of parasites into host cells
Profilin as regulator of F-actin dynamics during invasion of apicomplexan parasites
La motilité des Apicomplexes est basée sur un moteur acto-myosine. Pour comprendre plus en détail comment les filaments d'actine sont régulés chez ces parasites, une étude de la profiline, une petite molécule liant l'actine, a été entreprise chez le Toxoplasme. Cette étude a révélé que la profiline des apicomplexes participe à la polymérisation des filaments d'actine aux bouts barbés, comme le font leur homologues dans les autres eukaryotes, et que la profiline est essentielle à la motilité et par conséquent à la survie des parasites. Des études préliminaires sur les formines de ce parasite ont aussi été menées. Elles ont permis de démontrer que ces protéines ont la capacité de nucléer les filaments d'actine, et des approches expérimentales, visant à élucider leurs fonctions, ont été élaborées
Hijacking of host cellular functions by the Apicomplexa
Intracellular pathogens such as viruses and bacteria subvert all the major cellular functions of their hosts. Targeted host processes include protein synthesis, membrane trafficking, modulation of gene expression, antigen presentation, and apoptosis. In recent years, it has become evident that protozoan pathogens, including members of the phylum Apicomplexa, also hijack their host cell's functions to access nutrients and to escape cellular defenses and immune responses. These obligate intracellular parasites provide superb illustrations of the subversion of host cell processes such as the recruitment and reorganization of host cell compartments without fusion around the parasitophorous vacuole of Toxoplasma gondii; the export of Plasmodium falciparum proteins on the surface of infected erythrocytes; and the induced transformation of the lymphocytes infected by Theileria parva, which leads to clonal extension
Toxoplasma profilin is essential for host cell invasion and TLR11–dependent induction of an interleukin–12 response
Apicomplexan parasites exhibit actin–dependent gliding motility that is essential for migration across biological barriers and host cell invasion. Profilins are key contributors to actin polymerization, and the parasite Toxoplasma gondii possesses a profilin–like protein that is recognized by Toll–like receptor TLR11 in the host innate immune system. Here, we show by conditional disruption of the corresponding gene that T.gondii profilin, while not required for intracellular growth, is indispensable for gliding motility, host cell invasion, active egress from host cells, and virulence in mice. Furthermore, parasites lacking profilin are unable to induce TLR11–dependent production in vitro and in vivo of the defensive host cytokine interleukin–12. Thus, profilin is an essential element of two aspects of T. gondii infection. Like bacterial flagellin, profilin plays a role in motility while serving as a microbial ligand recognized by the host innate immune system
Surface water treatment by UV/H2O2 with subsequent soil aquifer treatment: impact on micropollutants, dissolved organic matter and biological activity
Because organic micropollutants (MP) are frequently detected in river waters that are used as drinking water sources, combining a relatively cost-efficient natural treatment with upstream advanced oxidation processes (AOP) appears promising for their efficient abatement. Such a multi-barrier system can be integrated in drinking water production schemes to minimize risks from potentially hazardous MPs. This study investigates the impact of an UV/H2O2 AOP before soil aquifer treatment (SAT) on the abatement of selected MPs (EDTA, acesulfame, iopamidol, iomeprol, metformin, 1H-benzotriazole, iopromide), dissolved organic matter (DOM) (apparent molecular size distribution, specific UV absorbance at 254 nm - SUVA) and microbial parameters (intact cell count, cell-bound ATP). A pilot plant consisting of an AOP (0.5 m(3) h(-1), 4 mg L-1 H2O2, 6000 J m(-2)) and two parallel soil columns (filtration velocity: 1 m d(-1), column height: 1 m) was continuously operated over a period of 15 months with Rhine river water pre-treated with rapid sand filtration. The investigations revealed a shift towards longer retention times of the humic substances peak in LC analysis of DOM, lower SUVA and higher biodegradability of DOM after UV/H2O2 treatment. In addition, an overall higher abatement of all investigated MPs by the combined treatment was observed (AOP with subsequent SAT) compared to either process alone. This observation could be explained by an addition of the single treatment effects. The strong primary disinfection effect of the AOP was detectable along the first meter of infiltration, but did not lead to any change in the column performance (i.e., similar abatement of dissolved organic matter)
Micropollutants as internal probe compounds to assess UV fluence and hydroxyl radical exposure in UV/H 2 O 2 treatment
Organic micropollutants (MPs) are increasingly detected in water resources, which can be a concern for human health and the aquatic environment. Ultraviolet (UV) radiation based advanced oxidation processes (AOP) such as low-pressure mercury vapor arc lamp UV/H 2 O 2 can be applied to abate these MPs. During UV/H 2 O 2 treatment, MPs are abated primarily by photolysis and reactions with hydroxyl radicals ( 'OH), which are produced in situ from H 2 O 2 photolysis. Here, a model is presented that calculates the applied UV fluence ( H calc ) and the 'OH exposure ( C T ?OH , calc ) from the abatement of two selected MPs, which act as internal probe compounds. Quantification of the UV fluence and hydroxyl radical exposure was generally accurate when a UV susceptible and a UV resistant probe compound were selected, and both were abated at least by 50 %, e.g., iopamidol and 5-methyl-1H-benzotriazole. Based on these key parameters a model was developed to predict the abatement of other MPs. The prediction of abatement was verified in various waters (sand filtrates of rivers Rhine and Wiese, and a tertiary wastewater effluent) and at different scales (laboratory experiments, pilot plant). The accuracy to predict the abatement of other MPs was typically within ?20 % of the respective measured abatement. The model was further assessed for its ability to estimate unknown rate constants for direct photolysis ( k UV , MP ) and reactions with 'OH ( k ?OH , MP ). In most cases, the estimated rate constants agreed well with published values, considering the uncertainty of kinetic data determined in laboratory experiments. A sensitivity analysis revealed that in typical water treatment applications, the precision of kinetic parameters ( k UV , MP for UV susceptible and k ?OH , MP for UV resistant probe compounds) have the strongest impact on the model?s accuracy. ? 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/
Met acts through Abl to regulate p53 transcriptional outcomes and cell survival in the developing liver
International audienceBACKGROUND & AIMS: Genetic studies indicate that distinct signaling modulators are each necessary but not individually sufficient for embryonic hepatocyte survival in vivo. Nevertheless, how signaling players are interconnected into functional circuits and how they coordinate the balance of cell survival and death in developing livers are still major unresolved issues. In the present study, we examined the modulation of the p53 pathway by HGF/Met in embryonic livers. METHODS: We combined pharmacological and genetic approaches to biochemically and functionally evaluate p53 pathway modulation in primary embryonic hepatocytes and in developing livers. RT-PCR arrays were applied to investigate the selectivity of p53 transcriptional response triggered by Met. RESULTS: Met recruits p53 to regulate the liver developmental program, by qualitatively modulating its transcriptional properties: turning on the Mdm2 survival gene, while keeping death and cell-cycle arrest genes Pmaip1 and p21 silent. We investigated the mechanism leading to p53 regulation by Met and found that Abl and p38MAPK are required for p53 phosphorylation on S(389), Mdm2 upregulation, and hepatocyte survival. Alteration of this signaling mechanism switches p53 properties, leading to p53-dependent cell death in embryonic livers. RT-PCR array studies affirmed the ability of the Met-Abl-p53 axis to modulate the expression of distinct genes that can be regulated by p53. CONCLUSIONS: A signaling circuit involving Abl and p38MAPK is required downstream of Met for the survival of embryonic hepatocytes, via qualitative regulation of the p53 transcriptional response, by switching its proapoptotic into survival properties