55 research outputs found

    The Role of BACH2 in T Cells in Experimental Malaria Caused by Plasmodium chabaudi chabaudi AS

    Get PDF
    BTB and CNC Homology 1, Basic Leucine Zipper Transcription Factor 2 (BACH2) is a transcription factor best known for its role in B cell development. More recently, it has been associated with T cell functions in inflammatory diseases, and has been proposed as a master transcriptional regulator within the T cell compartment. In this study, we employed T cell-specific Bach2-deficient (B6.Bach2Ī”T) mice to examine the role of this transcription factor in CD4+ T cell functions in vitro and in mice infected with Plasmodium chabaudi AS. We found that under CD4+ T cell polarizing conditions in vitro, Th2, and Th17 helper cell subsets were more active in the absence of Bach2 expression. In mice infected with P. chabaudi AS, although the absence of Bach2 expression by T cells had no effect on blood parasitemia or disease pathology, we found reduced expansion of CD4+ T cells in B6.Bach2Ī”T mice, compared with littermate controls. Despite this reduction, we observed increased frequencies of Tbet+ IFNĪ³+ CD4+ (Th1) cells and IL-10-producing Th1 (Tr1) cells in mice lacking Bach2 expression by T cells. Studies in mixed bone marrow chimeric mice revealed T cell intrinsic effects of BACH2 on hematopoietic cell development, and in particular, the generation of CD4+ and CD8+ T cell subsets. Furthermore, T cell intrinsic BACH2 was needed for efficient expansion of CD4+ T cells during experimental malaria in this immunological setting. We also examined the response of B6.Bach2Ī”T mice to a second protozoan parasitic challenge with Leishmania donovani and found similar effects on disease outcome and T cell responses. Together, our findings provide new insights into the role of BACH2 in CD4+ T cell activation during experimental malaria, and highlight an important role for this transcription factor in the development and expansion of T cells under homeostatic conditions, as well as establishing the composition of the effector CD4+ T cell compartment during infection

    A study of the TNF/LTA/LTB locus and susceptibility to severe malaria in highland papuan children and adults

    Get PDF
    Background: Severe malaria (SM) syndromes caused by Plasmodium falciparum infection result in major morbidity and mortality each year. However, only a fraction of P. falciparum infections develop into SM, implicating host genetic factors as important determinants of disease outcome. Previous studies indicate that tumour necrosis factor (TNF) and lymphotoxin alpha (LT alpha) may be important for the development of cerebral malaria (CM) and other SM syndromes

    IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection

    Get PDF
    Funding: This work was funded by a Career Development Fellowship (1028634) and a project grant (GRNT1028641) awarded to AHa by the Australian National Health & Medical Research Council (NHMRC). IS was supported by The University of Queensland Centennial and IPRS Scholarships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions

    Get PDF
    Abstract: Background and aims: Kupffer cells (KCs), the resident tissue macrophages of the liver, play a crucial role in the clearance of pathogens and other particulate materials that reach the systemic circulation. Recent studies have identified KCs as a yolk sac-derived resident macrophage population that is replenished independently of monocytes in the steady state. Although it is now established that following local tissue injury, bone-marrow derived monocytes may infiltrate the tissue and differentiate into macrophages, the extent to which newly differentiated macrophages functionally resemble the KCs they have replaced has not been extensively studied. Methods and results: Here we show using intravital microscopy, morphometric analysis and gene expression profiling that bone marrow derived ā€œKCsā€ accumulating as a result of genotoxic injury resemble, but are not identical to their yolk-sac (YS) counterparts. An ion homeostasis gene signature, including genes associated with scavenger receptor function and extracellular matrix deposition, allows discrimination between these two KC populations. Reflecting the differential expression of scavenger receptors, YS-derived KCs were more effective at accumulating Ac-LDL, whereas surprisingly they were poorer than BM-derived KCs when assessed for uptake of a range of bacterial pathogens. The two KC populations were almost indistinguishable in regard to i) response to LPS challenge, ii) phagocytosis of effete RBCs and iii) their ability to contain infection and direct granuloma formation against Leishmania donovani, a KC-tropic intracellular parasite. Conclusions: BM-derived KCs differentiate locally to resemble YS-derived KC in most but not all respects, with implications for models of infectious diseases, liver injury and bone marrow transplantation. In addition, the gene signature we describe adds to the tools available for distinguishing KC subpopulations based on their ontology

    Safety, infectivity and immunogenicity of a genetically attenuated blood-stage malaria vaccine

    Get PDF
    Background There is a clear need for novel approaches to malaria vaccine development. We aimed to develop a genetically attenuated blood-stage vaccine and test its safety, infectivity, and immunogenicity in healthy volunteers. Our approach was to target the gene encoding the knob-associated histidine-rich protein (KAHRP), which is responsible for the assembly of knob structures at the infected erythrocyte surface. Knobs are required for correct display of the polymorphic adhesion ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1), a key virulence determinant encoded by a repertoire of var genes. Methods The gene encoding KAHRP was deleted from P. falciparum 3D7 and a master cell bank was produced in accordance with Good Manufacturing Practice. Eight malaria naĆÆve males were intravenously inoculated (day 0) with 1800 (2 subjects), 1.8 Ɨā€‰105 (2 subjects), or 3 Ɨā€‰106 viable parasites (4 subjects). Parasitemia was measured using qPCR; immunogenicity was determined using standard assays. Parasites were rescued into culture for in vitro analyses (genome sequencing, cytoadhesion assays, scanning electron microscopy, var gene expression). Results None of the subjects who were administered with 1800 or 1.8 Ɨā€‰105 parasites developed parasitemia; 3/4 subjects administered 3Ɨā€‰106 parasites developed significant parasitemia, first detected on days 13, 18, and 22. One of these three subjects developed symptoms of malaria simultaneously with influenza B (day 17; 14,022 parasites/mL); one subject developed mild symptoms on day 28 (19,956 parasites/mL); and one subject remained asymptomatic up to day 35 (5046 parasites/mL). Parasitemia rapidly cleared with artemether/lumefantrine. Parasitemia induced a parasite-specific antibody and cell-mediated immune response. Parasites cultured ex vivo exhibited genotypic and phenotypic properties similar to inoculated parasites, although the var gene expression profile changed during growth in vivo. Conclusions This study represents the first clinical investigation of a genetically attenuated blood-stage human malaria vaccine. A P. falciparum 3D7 kahrpā€“ strain was tested in vivo and found to be immunogenic but can lead to patent parasitemia at high doses

    Critical Roles for LIGHT and Its Receptors in Generating T Cell-Mediated Immunity during Leishmania donovani Infection

    Get PDF
    LIGHT (TNFSF14) is a member of the TNF superfamily involved in inflammation and defence against infection. LIGHT signals via two cell-bound receptors; herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTĪ²R). We found that LIGHT is critical for control of hepatic parasite growth in mice with visceral leishmaniasis (VL) caused by infection with the protozoan parasite Leishmania donovani. LIGHT-HVEM signalling is essential for early dendritic cell IL-12/IL-23p40 production, and the generation of IFNĪ³- and TNF-producing T cells that control hepatic infection. However, we also discovered that LIGHT-LTĪ²R interactions suppress anti-parasitic immunity in the liver in the first 7 days of infection by mechanisms that restrict both CD4+ T cell function and TNF-dependent microbicidal mechanisms. Thus, we have identified distinct roles for LIGHT in infection, and show that manipulation of interactions between LIGHT and its receptors may be used for therapeutic advantage

    Ovalbumin lipid core peptide vaccines and their CD4+ and CD8+ T cell responses

    No full text
    The lipid core peptide (LCP) system has successfully been used in development of peptide-based vaccines against cancer and infectious diseases (such as group A streptococcal infection). CD8 T cells are important targets for vaccines, however developing a vaccine that activates long-lasting immunity has proven challenging. The ability of LCP vaccines to activate antigen-specific CD8 and/or CD4 T cell responses was tested using compounds that contained two or four copies of OVA and/or OVA peptides conjugated to LCP, which are recognised by OTI (CD8 specific) and OTII (CD4 specific) T cells, respectively. The LCP-ovalbumin vaccines developed in this study were synthesised in 30% yields and showed no significant haemolytic effect on red blood cells (below 4% haemolysis when tested with compounds at up to 100Ī¼M concentrations). Promising in vivo data in mice suggested that this LCP-ovalbumin vaccine system could act as a novel and potent vehicle for the stimulation of robust antigen-specific CD8 T cell responses

    Therapeutic glucocorticoid-induced TNF receptor-mediated amplification of CD4+ T cell responses enhances antiparasitic immunity.

    No full text
    Chronic infectious diseases and cancers are often associated with suboptimal effector T cell responses. Enhancement of T cell costimulatory signals has been extensively studied for cancer immunotherapy but not so for the treatment of infectious disease. The few previous attempts at this strategy using infection models have lacked cellular specificity, with major immunoregulatory mechanisms or innate immune cells also being targeted. In this study, we examined the potential of promoting T cell responses via the glucocorticoid-induced TNF receptor (GITR) family-related protein in a murine model of visceral leishmaniasis. GITR stimulation during established infection markedly improved antiparasitic immunity. This required CD4(+) T cells, TNF, and IFN-gamma, but crucially, was independent of regulatory T (Treg) cells. GITR stimulation enhanced CD4(+) T cell expansion without modulating Treg cell function or protecting conventional CD4(+) T cells from Treg cell suppression. GITR stimulation substantially improved the efficacy of a first-line visceral leishmaniasis drug against both acute hepatic infection and chronic infection in the spleen, demonstrating its potential to improve clinical outcomes. This study identifies a novel strategy to therapeutically enhance CD4(+) T cell-mediated antiparasitic immunity and, importantly, achieves this goal without impairment of Treg cell function

    Blimp-1-dependent IL-10 production by Tr1 cells regulates TNF-mediated tissue pathology

    No full text
    Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNĪ³-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.</p
    • ā€¦
    corecore