16,087 research outputs found
Low-energy scattering of extremal black holes by neutral matter
We investigate the decay of a spherically symmetric near-extremal charged
black hole, including back-reaction effects, in the near-horizon region. The
non-locality of the effective action controlling this process allows and also
forces us to introduce a complementary set of boundary conditions which permit
to determine the asymptotic late time Hawking flux. The evaporation rate goes
down exponentially and admits an infinite series expansion in Planck's
constant. At leading order it is proportional to the total mass and the higher
order terms involve higher order momenta of the classical stress-tensor.
Moreover we use this late time behaviour to go beyond the near-horizon
approximation and comment on the implications for the information loss paradox.Comment: LaTeX file, 14 pages. Expanded version replacing earlier
hep-th/001201
Static quantum corrections to the Schwarzschild spacetime
We study static quantum corrections of the Schwarzschild metric in the
Boulware vacuum state. Due to the absence of a complete analytic expression for
the full semiclassical Einstein equations we approach the problem by
considering the s-wave approximation and solve numerically the associated
backreaction equations. The solution, including quantum effects due to pure
vacuum polarization, is similar to the classical Schwarzschild solution up to
the vicinity of the classical horizon. However, the radial function has a
minimum at a time-like surface close to the location of the classical event
horizon. There the g_{00} component of the metric reaches a very small but
non-zero value. The analysis unravels how a curvature singularity emerges
beyond this bouncing point. We briefly discuss the physical consequences of
these results by extrapolating them to a dynamical collapsing scenario.Comment: 10 pages; Talk given at QG05, Cala Gonone (Italy), September 200
Semiclassical zero-temperature corrections to Schwarzschild spacetime and holography
Motivated by the quest for black holes in AdS braneworlds, and in particular
by the holographic conjecture relating 5D classical bulk solutions with 4D
quantum corrected ones, we numerically solve the semiclassical Einstein
equations (backreaction equations) with matter fields in the (zero temperature)
Boulware vacuum state. In the absence of an exact analytical expression for
in four dimensions we work within the s-wave approximation. Our
results show that the quantum corrected solution is very similar to
Schwarzschild till very close to the horizon, but then a bouncing surface for
the radial function appears which prevents the formation of an event horizon.
We also analyze the behavior of the geometry beyond the bounce, where a
curvature singularity arises. In the dual theory, this indicates that the
corresponding 5D static classical braneworld solution is not a black hole but
rather a naked singularity.Comment: 26 pages, 4 figures; revised version (title changed, conclusions
shortened), published as Phys. Rev. D73, 104023 (2006
Momentum-resolved study of an array of 1D strongly phase-fluctuating Bose gases
We investigate the coherence properties of an array of one-dimensional Bose
gases with short-scale phase fluctuations. The momentum distribution is
measured using Bragg spectroscopy and an effective coherence length of the
whole ensemble is defined. In addition, we propose and demonstrate that
time-of-flight absorption imaging can be used as a simple probe to directly
measure the coherence-length of 1D gases in the regime where phase-fluctuations
are strong. This method is suitable for future studies such as investigating
the effect of disorder on the phase coherence.Comment: 4 pages, 4 figure
A Planck-like problem for quantum charged black holes
Motivated by the parallelism existing between the puzzles of classical
physics at the beginning of the XXth century and the current paradoxes in the
search of a quantum theory of gravity, we give, in analogy with Planck's black
body radiation problem, a solution for the exact Hawking flux of evaporating
Reissner-Nordstrom black holes. Our results show that when back-reaction
effects are fully taken into account the standard picture of black hole
evaporation is significantly altered, thus implying a possible resolution of
the information loss problem.Comment: 6 pages, LaTeX file, Awarded Fifth Prize in the Gravity Research
Foundation Essay Competition for 200
Quantum effects in Acoustic Black Holes: the Backreaction
We investigate the backreaction equations for an acoustic black hole formed
in a Laval nozzle under the assumption that the motion of the fluid is
one-dimensional. The solution in the near-horizon region shows that as phonons
are (thermally) radiated the sonic horizon shrinks and the temperature
decreases. This contrasts with the behaviour of Schwarzschild black holes, and
is similar to what happens in the evaporation of (near-extremal)
Reissner-Nordstrom black holes (i.e. infinite evaporation time). Finally, by
appropriate boundary conditions the solution is extended in both the asymptotic
regions of the nozzle.Comment: 23 pages, latex, 1 figure; revised version, to appear in Phys. Rev.
Bouncing Cosmologies in Palatini Gravity
We consider the early time cosmology of f(R) theories in Palatini formalism
and study the conditions that guarantee the existence of homogeneous and
isotropic models that avoid the Big Bang singularity. We show that for such
models the Big Bang singularity can be replaced by a cosmic bounce without
violating any energy condition. In fact, the bounce is possible even for
pressureless dust. We give a characterization of such models and discuss their
dynamics in the region near the bounce. We also find that power-law lagrangians
with a finite number of terms may lead to non-singular universes, which
contrasts with the infinite-series Palatini f(R) lagrangian that one needs to
fully capture the effective dynamics of Loop Quantum Cosmology. We argue that
these models could also avoid the formation of singularities during stellar
gravitational collapse.Comment: 8 pages, 4 figures; added references and a short comment in sec.I
Formation and Evaporation of Charged Black Holes
We investigate the dynamical formation and evaporation of a spherically
symmetric charged black hole. We study the self-consistent one loop order
semiclassical back-reaction problem. To this end the mass-evaporation is
modeled by an expectation value of the stress-energy tensor of a neutral
massless scalar field, while the charge is not radiated away. We observe the
formation of an initially non extremal black hole which tends toward the
extremal black hole , emitting Hawking radiation. If also the discharge
due to the instability of vacuum to pair creation in strong electric fields
occurs, then the black hole discharges and evaporates simultaneously and decays
regularly until the scale where the semiclassical approximation breaks down. We
calculate the rates of the mass and the charge loss and estimate the life-time
of the decaying black holes.Comment: 23 pages, 7 eps figures, RevTex, accepted for publication in Phys.
Rev.
Cutoff AdS/CFT duality and the quest for braneworld black holes
We present significant evidence in favour of the holographic conjecture that
``4D black holes localized on the brane found by solving the classical bulk
equations in are quantum corrected black holes and not classical
ones''. The crucial test is the calculation of the quantum correction to the
Newtonian potential based on a numerical computation of in
Schwarzschild spacetime for matter fields in the zero temperature Boulware
vacuum state. For the case of the conformally invariant scalar field the
leading order term is found to be $M/45\pi r^3$. This result is equivalent to
the result which was previously obtained in the weak-field approximation using
Feynman diagrams and which has been shown to be equivalent, via the AdS/CFT
duality, to the analogous calculation in Randall-Sundrum braneworlds. This
asymptotic behavior was not captured in the analytical approximations for
proposed in the literature. The 4D backreaction equations are then
used to make a prediction about the existence and the possible spacetime
structure of macroscopic static braneworld black holes.Comment: 4 pages, 2 figure
Chandra Observations of SN 2004et and the X-ray Emission of Type IIp Supernovae
We report the X-ray detection of the Type II-plateau supernova SN 2004et in
the spiral galaxy NGC 6946, using the Chandra X-Ray Observatory. The position
of the X-ray source was found to agree with the optical position within ~0.4
arcsec. Chandra also surveyed the region before the 2004 event, finding no
X-ray emission at the location of the progenitor. For the post-explosion
observations, a total of 202, 151, and 158 photons were detected in three
pointings, each ~29 ks in length, on 2004 October 22, November 6, and December
3, respectively. The spectrum of the first observation is best fit by a thermal
model with a temperature of kT=1.3 keV and a line-of-sight absorption of
N_H=1.0 x 10^{22} cm^{-2}. The inferred unabsorbed luminosity (0.4-8 keV) is
~4x10^{38} erg/s, adopting a distance of 5.5 Mpc. A comparison between hard and
soft counts on the first and third epochs indicates a softening over this time,
although there is an insufficient number of photons to constrain the variation
of temperature and absorption by spectral fitting. We model the emission as
arising from the reverse shock region in the interaction between the supernova
ejecta and the progenitor wind. For a Type IIP supernova with an extended
progenitor, the cool shell formed at the time of shock wave breakout from the
star can affect the initial evolution of the interaction shell and the
absorption of radiation from the reverse shock. The observed spectral softening
might be due to decreasing shell absorption. We find a pre-supernova mass loss
rate of (2-2.5)x 10^{-6} M_{\odot} /yr for a wind velocity of 10 kms, which is
in line with expectations for a Type IIP supernova.Comment: total 19 pages including 7 figures. ApJ, in press. See
http://spider.ipac.caltech.edu/staff/rho/preprint/SN2004etms.ps for the paper
including full resolution image
- …
