10 research outputs found

    Non-LTE neutral carbon spectral line formation in late-type stars

    Full text link
    We present non-Local Thermodynamic Equilibrium (non-LTE) calculations for neutral carbon spectral line formation, carried out for a grid of model atmospheres covering the range of late-type stars. The results of our detailed calculations suggest that the carbon non-LTE corrections in these stars are higher than usually adopted, remaining substantial even at low metallicity. For the most metal-poor stars in the sample of Akerman et al. (2004), the non-LTE abundance corrections are of the order of -0.35...-0.45 dex (when neglecting H collisions). Applying our results to those observations, the apparent [C/O] upturn seen in their LTE analysis is no longer present, thus revealing no need to invoke contributions from Pop. III stars to the carbon nucleosynthesis.Comment: 2 pages, 1 figure. To appear in the Proceedings of IAU Symposium 228 "From Li to U: Elemental Tracers of Early Cosmic Evolution", eds. V. Hill, P. Francois and F. Primas, Cambridge University Press. Replacement with minor textual correction

    Lower solar atmosphere and magnetism at ultra-high spatial resolution

    Get PDF
    We present the scientific case for a future space-based telescope aimed at very high spatial and temporal resolution imaging of the solar photosphere and chromosphere. Previous missions (e.g., HINODE, SUNRISE) have demonstrated the power of observing the solar photosphere and chromosphere at high spatial resolution without contamination from Earth's atmosphere. We argue here that increased spatial resolution (from currently 70 km to 25 km in the future) and high temporal cadence of the observations will vastly improve our understanding of the physical processes controlling solar magnetism and its characteristic scales. This is particularly important as the Sun's magnetic field drives solar activity and can significantly influence the Sun-Earth system. At the same time a better knowledge of solar magnetism can greatly improve our understanding of other astrophysical objects

    The C/O ratio at low metallicity: constraints on early chemical evolution from observations of Galactic halo stars

    No full text
    Aims. We present new measurements of the abundances of carbon and oxygen derived from high-excitation Ci and Oi absorption lines in metal-poor halo stars, with the aim of clarifying the main sources of these two elements in the early stages of the chemical enrichment of the Galaxy.Methods. We target 15 new stars compared to our previous study, with an emphasis on additional C/O determinations in the crucial metallicity range -3 ≲ [Fe/H]l ∼ -2. The stellar effective temperatures were estimated from the profile of the Hβ line. Departures from local thermodynamic equilibrium were accounted for in the line formation for both carbon and oxygen. The non-LTE effects are very strong at the lowest metallicities but, contrary to what has sometimes been assumed in the past due to a simplified assessment, of different degrees for the two elements. In addition, for the 28 stars with [Fe/H] < -1 previously analysed, stellar parameters were re-derived and non-LTE corrections applied in the same fashion as for the rest of our sample, giving consistent abundances for 43 halo stars in total.Results. The new observations and non-LTE calculations strengthen previous suggestions of an upturn in C/O towards lower metallicity (particularly for [O/H]≲-2). The C/O values derived for these very metal-poor stars are, however, sensitive to excitation via the still poorly quantified inelastic H collisions. While these do not significantly affect the non-LTE results for C i, they greatly modify the Oi outcome. Adopting the H collisional cross-sections estimated from the classical Drawin formula leads tzo [C/O] ≲ 0 at [O/H] ≲ -3. To remove the upturn in C/O, near-LTE formation for i lines would be required, which could only happen if the H collisional efficiency with the Drawin recipe is underestimated by factors of up to several tens of times, a possibility which we consider unlikely.Conclusions. The high C/O values derived at the lowest metallicities may be revealing the fingerprints of Population III stars or may signal rotationally-aided nucleosynthesis in more normal Population II stars

    Accurate Short-Characteristics Radiative Transfer in A Numerical Tool for Astrophysical RESearch (ANTARES)

    No full text
    We aim to improve the accuracy of radiative energy transport in three-dimensional radiation hydrodynamical simulations in ANTARES (A Numerical Tool for Astrophysical RESearch). We implement in the ANTARES short-characteristics numerical schemes a modification of the Bezier interpolant solver. This method yields a smoother surface structure in simulations of solar convection and reduces the artifacts appearing due to the limited number of rays along which the integration is done. Reducing such artifacts leads to increased stability of the code. We show that our new implementation achieves a better agreement of the temperature structure and its gradient with a semi-empirical model derived from observations, as well as of synthetic spectral-line profiles with the observed solar spectrum

    Effective temperatures and lithium abundances of halo turnoff stars

    No full text
    Effective temperatures of 30 turnoff stars with -3.2 < [Fe/H] < -1.5 have been derived from the profiles of Balmer lines in high S/N, VLT/UVES spectra. While the systematic error of Teff may be of the order of 100 K, the differential values of Teff are determined with a one-sigma precision of ∼25K. These precise Teff values are used in a study of the slope and dispersion of the Li abundance as a function of [Fe/H]. A small, but significant cosmic dispersion in A (Li) appears to be present exemplified by the two very metal-poor stars G64-12 and G64-37

    Sulphur and zinc abundances in galactic halo stars revisited

    No full text
    Aims. Based on a new set of sulphur abundances in very metal-poor stars and an improved analysis of previous data, we aim at resolving current discrepancies on the trend of S/Fe vs. Fe/H and thereby gain better insight into the nucleosynthesis of sulphur. The trends of Zn/Fe and S/Zn will also be studied. Methods. High resolution VLT/UVES spectra of 40 main-sequence stars with -3.3 < [Fe/H] < -1.0 are used to derive S abundances from the weak λ8694.6 S I line and the stronger λλ9212.9, 9237.5 pair of S I lines. For one star, the S abundance is also derived from the S I triplet at 1.046μm recently observed with the VLT infrared echelle spectrograph CRIRES. Fe and Zn abundances are derived from lines in the blue part of the UVES spectra, and effective temperatures are obtained from the profile of the Hβ line. Results. Comparison of sulphur abundances from the weak and strong S I lines provides important constraints on non-LTE effects. The high sulphur abundances reported by others for some metal-poor stars are not confirmed; instead, when taking non-LTE corrections into account, the Galactic halo stars distribute around a plateau at [S/Fe] ∼ +0.2 dex with a scatter of 0.07 dex only. [Zn/Fe] is close to zero for metallicities in the range -2.0 < [Fe/H] < -1.0 but increases to a level of [Zn/Fe] ∼ +0.1 to +0.2 dex in the range -2.7 < [Fe/H] < -2.0. At still lower metallicities [Zn/Fe] rises steeply to a value of [Zn/Fe] ∼ +0.5 dex at [Fe/H] = -3.2. Conclusions. The trend of S/Fe vs. Fe/H corresponds to the trends of Mg/Fe, Si/Fe, and Ca/Fe and indicates that sulphur in Galactic halo stars has been made by α-capture processes in massive SNe. The observed scatter in S/Fe is much smaller than predicted from current stochastic models of the chemical evolution of the early Galaxy, suggesting that either the models or the calculated yields of massive SNe should be revised. We also examine the behaviour of S/Zn and find that departures from the solar ratio are significantly reduced at all metallicities if non-LTE corrections to the abundances of these two elements are adopted. This effect, if confirmed, would reduce the usefulness of the S/Zn ratio as a diagnostic of past star-formation activity, but would bring closer together the values measured in damped Lyman-alpha systems and in Galactic stars

    Target selection for the Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    Get PDF
    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a high-resolution infrared spectroscopic survey spanning all Galactic environments (i.e., bulge, disk, and halo), with the principal goal of constraining dynamical and chemical evolution models of the Milky Way. APOGEE takes advantage of the reduced effects of extinction at infrared wavelengths to observe the inner Galaxy and bulge at an unprecedented level of detail. The survey’s broad spatial and wavelength coverage enables users of APOGEE data to address numerous Galactic structure and stellar populations issues. In this paper we describe the APOGEE targeting scheme and document its various target classes to provide the necessary background and reference information to analyze samples of APOGEE data with awareness of the imposed selection criteria and resulting sample properties. APOGEE’s primary sample consists of ∼105 red giant stars, selected to minimize observational biases in age and metallicity. We present the methodology and considerations that drive the selection of this sample and evaluate the accuracy, efficiency, and caveats of the selection and sampling algorithms. We also describe additional target classes that contribute to the APOGEE sample, including numerous ancillary science programs, and we outline the targeting data that will be included in the public data releases

    Target selection for the Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    Get PDF
    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a high-resolution infrared spectroscopic survey spanning all Galactic environments (i.e., bulge, disk, and halo), with the principal goal of constraining dynamical and chemical evolution models of the Milky Way. APOGEE takes advantage of the reduced effects of extinction at infrared wavelengths to observe the inner Galaxy and bulge at an unprecedented level of detail. The survey’s broad spatial and wavelength coverage enables users of APOGEE data to address numerous Galactic structure and stellar populations issues. In this paper we describe the APOGEE targeting scheme and document its various target classes to provide the necessary background and reference information to analyze samples of APOGEE data with awareness of the imposed selection criteria and resulting sample properties. APOGEE’s primary sample consists of ∼105 red giant stars, selected to minimize observational biases in age and metallicity. We present the methodology and considerations that drive the selection of this sample and evaluate the accuracy, efficiency, and caveats of the selection and sampling algorithms. We also describe additional target classes that contribute to the APOGEE sample, including numerous ancillary science programs, and we outline the targeting data that will be included in the public data releases

    The tenth data release of the Sloan Digital Sky Survey : first spectroscopic data from the SDSS-III Apachhe Point Observatory galactic evolution experiment

    Get PDF
    The Sloan Digital Sky Survey (SDSS) has been in operation since 2000 April. This paper presents the Tenth Public Data Release (DR10) from its current incarnation, SDSS-III. This data release includes the first spectroscopic data from the Apache Point Observatory Galaxy Evolution Experiment (APOGEE), along with spectroscopic data from the Baryon Oscillation Spectroscopic Survey (BOSS) taken through 2012 July. The APOGEE instrument is a near-infrared R ∼ 22,500 300 fiber spectrograph covering 1.514–1.696μm. The APOGEE survey is studying the chemical abundances and radial velocities of roughly 100,000 red giant star candidates in the bulge, bar, disk, and halo of the MilkyWay. DR10 includes 178,397 spectra of 57,454 stars, each typically observed three or more times, from APOGEE. Derived quantities from these spectra (radial velocities, effective temperatures, surface gravities, and metallicities) are also included. DR10 also roughly doubles the number of BOSS spectra over those included in the Ninth Data Release. DR10 includes a total of 1,507,954 BOSS spectra comprising 927,844 galaxy spectra, 182,009 quasar spectra, and 159,327 stellar spectra selected over 6373.2 deg2
    corecore