470 research outputs found

    Activation Mobilizes the Cholesterol in the Late Endosomes-Lysosomes of Niemann Pick Type C Cells

    Get PDF
    A variety of intercalating amphipaths increase the chemical activity of plasma membrane cholesterol. To test whether intracellular cholesterol can be similarly activated, we examined NPC1 and NPC2 fibroblasts, since they accumulate large amounts of cholesterol in their late endosomes and lysosomes (LE/L). We gauged the mobility of intracellular sterol from its appearance at the surface of the intact cells, as determined by its susceptibility to cholesterol oxidase and its isotope exchange with extracellular 2-(hydroxypropyl)-β-cyclodextrin-cholesterol. The entire cytoplasmic cholesterol pool in these cells was mobile, exchanging with the plasma membrane with an apparent half-time of ∼3–4 hours, ∼4–5 times slower than that for wild type human fibroblasts (half-time ∼0.75 hours). The mobility of the intracellular cholesterol was increased by the membrane-intercalating amphipaths chlorpromazine and 1-octanol. Chlorpromazine also promoted the net transfer of LE/L cholesterol to serum and cyclodextrin. Surprisingly, the mobility of LE/L cholesterol was greatly stimulated by treating intact NPC cells with glutaraldehyde or formaldehyde. Similar effects were seen with wild type fibroblasts in which the LE/L cholesterol pool had been expanded using U18666A. We also showed that the cholesterol in the intracellular membranes of fixed wild-type fibroblasts was mobile; it was rapidly oxidized by cholesterol oxidase and was rapidly replenished by exogenous sterol. We conclude that a) the cholesterol in NPC cells can exit the LE/L (and the extensive membranous inclusions therein) over a few hours; b) this mobility is stimulated by the activation of the cholesterol with intercalating amphipaths; c) intracellular cholesterol is even more mobile in fixed cells; and d) amphipaths that activate cholesterol might be useful in treating NPC disease

    Synovitis in osteoarthritis: current understanding with therapeutic implications

    Get PDF
    Modern concepts of osteoarthritis (OA) have been forever changed by modern imaging phenotypes demonstrating complex and multi-tissue pathologies involving cartilage, subchondral bone and (increasingly recognized) inflammation of the synovium. The synovium may show significant changes, even before visible cartilage degeneration has occurred, with infiltration of mononuclear cells, thickening of the synovial lining layer and production of inflammatory cytokines. The combination of sensitive imaging modalities and tissue examination has confirmed a high prevalence of synovial inflammation in all stages of OA, with a number of studies demonstrating that synovitis is related to pain, poor function and may even be an independent driver of radiographic OA onset and structural progression. Treating key aspects of synovial inflammation therefore holds great promise for analgesia and also for structure modification. This article will review current knowledge on the prevalence of synovitis in OA and its role in symptoms and structural progression, and explore lessons learnt from targeting synovitis therapeutically

    Is there an association between female gender and outcome in severe trauma? A multi-center analysis in the Netherlands

    Get PDF
    Introduction Little evidence suggest that female gender is associated with a lower risk of mortality in severely injured patients, especially in premenopausal women. Previous clinical studies have shown contradictory results regarding protective effects of gender on outcome after severe trauma. The objective of this study was to determine the association between gender and outcome (mortality and Intensive Care Unit (ICU) admission) among severely injured patients in the Netherlands. Methods A retrospective multicentre study was performed including all polytrauma patients (Injury Severity Score (ISS) ≥16) admitted to the ED of three level 1 trauma centres, between January 1st, 2006 and December 31st, 2014. Data on age, gender, mechanism of injury, ISS, Abbreviated Injury Scale (AIS), prehospital intubation, Revised Trauma Score (RTS), systolic blood pressure (SBP) and Glasgow Com

    Drug-induced activation of SREBP-controlled lipogenic gene expression in CNS-related cell lines: Marked differences between various antipsychotic drugs

    Get PDF
    BACKGROUND: The etiology of schizophrenia is unknown, but neurodevelopmental disturbances, myelin- and oligodendrocyte abnormalities and synaptic dysfunction have been suggested as pathophysiological factors in this severe psychiatric disorder. Cholesterol is an essential component of myelin and has proved important for synapse formation. Recently, we demonstrated that the antipsychotic drugs clozapine and haloperidol stimulate lipogenic gene expression in cultured glioma cells through activation of the sterol regulatory element-binding protein (SREBP) transcription factors. We here compare the action of chlorpromazine, haloperidol, clozapine, olanzapine, risperidone and ziprasidone on SREBP activation and SREBP-controlled gene expression (ACAT2, HMGCR, HMGCS1, FDPS, SC5DL, DHCR7, LDLR, FASN and SCD1) in four CNS-relevant human cell lines. RESULTS: There were marked differences in the ability of the antipsychotic drugs to activate the expression of SREBP target genes, with clozapine and chlorpromazine as the most potent stimulators in a context of therapeutically relevant concentrations. Glial-like cells (GaMg glioma and CCF-STTG1 astrocytoma cell lines) displayed more pronounced drug-induced SREBP activation compared to the response in HCN2 human cortical neurons and SH-SY5Y neuroblastoma cells, indicating that antipsychotic-induced activation of lipogenesis is most prominent in glial cells. CONCLUSION: Our present data show a marked variation in the ability of different antipsychotics to induce SREBP-controlled transcriptional activation of lipogenesis in cultured human CNS-relevant cells. We propose that this effect could be relevant for the therapeutic efficacy of some antipsychotic drugs

    Deep-Inelastic Inclusive ep Scattering at Low x and a Determination of alpha_s

    Get PDF
    A precise measurement of the inclusive deep-inelastic e^+p scattering cross section is reported in the kinematic range 1.5<= Q^2 <=150 GeV^2 and 3*10^(-5)<= x <=0.2. The data were recorded with the H1 detector at HERA in 1996 and 1997, and correspond to an integrated luminosity of 20 pb^(-1). The double differential cross section, from which the proton structure function F_2(x,Q^2) and the longitudinal structure function F_L(x,Q^2) are extracted, is measured with typically 1% statistical and 3% systematic uncertainties. The measured partial derivative (dF_2(x,Q^2)/dln Q^2)_x is observed to rise continuously towards small x for fixed Q^2. The cross section data are combined with published H1 measurements at high Q^2 for a next-to-leading order DGLAP QCD analysis.The H1 data determine the gluon momentum distribution in the range 3*10^(-4)<= x <=0.1 to within an experimental accuracy of about 3% for Q^2 =20 GeV^2. A fit of the H1 measurements and the mu p data of the BCDMS collaboration allows the strong coupling constant alpha_s and the gluon distribution to be simultaneously determined. A value of alpha _s(M_Z^2)=0.1150+-0.0017 (exp) +0.0009-0.0005 (model) is obtained in NLO, with an additional theoretical uncertainty of about +-0.005, mainly due to the uncertainty of the renormalisation scale.Comment: 68 pages, 24 figures and 18 table

    Practical and Theoretical Considerations in Study Design for Detecting Gene-Gene Interactions Using MDR and GMDR Approaches

    Get PDF
    Detection of interacting risk factors for complex traits is challenging. The choice of an appropriate method, sample size, and allocation of cases and controls are serious concerns. To provide empirical guidelines for planning such studies and data analyses, we investigated the performance of the multifactor dimensionality reduction (MDR) and generalized MDR (GMDR) methods under various experimental scenarios. We developed the mathematical expectation of accuracy and used it as an indicator parameter to perform a gene-gene interaction study. We then examined the statistical power of GMDR and MDR within the plausible range of accuracy (0.50∼0.65) reported in the literature. The GMDR with covariate adjustment had a power of>80% in a case-control design with a sample size of≥2000, with theoretical accuracy ranging from 0.56 to 0.62. However, when the accuracy was<0.56, a sample size of≥4000 was required to have sufficient power. In our simulations, the GMDR outperformed the MDR under all models with accuracy ranging from 0.56∼0.62 for a sample size of 1000–2000. However, the two methods performed similarly when the accuracy was outside this range or the sample was significantly larger. We conclude that with adjustment of a covariate, GMDR performs better than MDR and a sample size of 1000∼2000 is reasonably large for detecting gene-gene interactions in the range of effect size reported by the current literature; whereas larger sample size is required for more subtle interactions with accuracy<0.56

    Implementation of 3 T Lactate-Edited 3D 1H MR Spectroscopic Imaging with Flyback Echo-Planar Readout for Gliomas Patients

    Get PDF
    The purpose of this study was to implement a new lactate-edited 3D 1H magnetic resonance spectroscopic imaging (MRSI) sequence at 3 T and demonstrate the feasibility of using this sequence for measuring lactate in patients with gliomas. A 3D PRESS MRSI sequence incorporating shortened, high bandwidth 180° pulses, new dual BASING lactate-editing pulses, high bandwidth very selective suppression (VSS) pulses and a flyback echo-planar readout was implemented at 3 T. Over-prescription factor of PRESS voxels was optimized using phantom to minimize chemical shift artifacts. The lactate-edited flyback sequence was compared with lactate-edited MRSI using conventional elliptical k-space sampling in a phantom and volunteers, and then applied to patients with gliomas. The results demonstrated the feasibility of detecting lactate within a short scan time of 9.5 min in both phantoms and patients. Over-prescription of voxels gave less chemical shift artifacts allowing detection of lactate on the majority of the selected volume. The normalized SNR of brain metabolites using the flyback encoding were comparable to the SNR of brain metabolites using conventional phase encoding MRSI. The specialized lactate-edited 3D MRSI sequence was able to detect lactate in brain tumor patients at 3 T. The implementation of this technique means that brain lactate can be evaluated in a routine clinical setting to study its potential as a marker for prognosis and response to therapy

    A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis

    Get PDF
    Introduction: Bone is an integral part of the osteoarthritis (OA) process. We conducted a systematic literature review in order to understand the relationship between non-conventional radiographic imaging of subchondral bone, pain, structural pathology and joint replacement in peripheral joint OA. Methods: A search of the Medline, EMBASE and Cochrane library databases was performed for original articles reporting association between non-conventional radiographic imaging-assessed subchondral bone pathologies and joint replacement, pain or structural progression in knee, hip, hand, ankle and foot OA. Each association was qualitatively characterised by a synthesis of the data from each analysis based upon study design, adequacy of covariate adjustment and quality scoring. Results: In total 2456 abstracts were screened and 139 papers were included (70 cross-sectional, 71 longitudinal analyses; 116 knee, 15 hip, six hand, two ankle and involved 113 MRI, eight DXA, four CT, eight scintigraphic and eight 2D shape analyses). BMLs, osteophytes and bone shape were independently associated with structural progression or joint replacement. BMLs and bone shape were independently associated with longitudinal change in pain and incident frequent knee pain respectively. Conclusion: Subchondral bone features have independent associations with structural progression, pain and joint replacement in peripheral OA in the hip and hand but especially in the knee. For peripheral OA sites other than the knee, there are fewer associations and independent associations of bone pathologies with these important OA outcomes which may reflect fewer studies; for example the foot and ankle were poorly studied. Subchondral OA bone appears to be a relevant therapeutic target. Systematic review: PROSPERO registration number: CRD 4201300500

    Discovery and replication of SNP-SNP interactions for quantitative lipid traits in over 60,000 individuals

    Get PDF
    Background The genetic etiology of human lipid quantitative traits is not fully elucidated, and interactions between variants may play a role. We performed a gene-centric interaction study for four different lipid traits: low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and triglycerides (TG). Results Our analysis consisted of a discovery phase using a merged dataset of five different cohorts (n = 12,853 to n = 16,849 depending on lipid phenotype) and a replication phase with ten independent cohorts totaling up to 36,938 additional samples. Filters are often applied before interaction testing to correct for the burden of testing all pairwise interactions. We used two different filters: 1. A filter that tested only single nucleotide polymorphisms (SNPs) with a main effect of p < 0.001 in a previous association study. 2. A filter that only tested interactions identified by Biofilter 2.0. Pairwise models that reached an interaction significance level of p < 0.001 in the discovery dataset were tested for replication. We identified thirteen SNP-SNP models that were significant in more than one replication cohort after accounting for multiple testing. Conclusions These results may reveal novel insights into the genetic etiology of lipid levels. Furthermore, we developed a pipeline to perform a computationally efficient interaction analysis with multi-cohort replication
    corecore