42 research outputs found

    Murine Dendritic Cells Transcriptional Modulation upon Paracoccidioides brasiliensis Infection

    Get PDF
    Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-α, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this β-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen

    Structure and Behavior of Human α-Thrombin upon Ligand Recognition: Thermodynamic and Molecular Dynamics Studies

    Get PDF
    Thrombin is a serine proteinase that plays a fundamental role in coagulation. In this study, we address the effects of ligand site recognition by alpha-thrombin on conformation and energetics in solution. Active site occupation induces large changes in secondary structure content in thrombin as shown by circular dichroism. Thrombin-D-Phe-Pro-Arg-chloromethyl ketone (PPACK) exhibits enhanced equilibrium and kinetic stability compared to free thrombin, whose difference is rooted in the unfolding step. Small-angle X-ray scattering (SAXS) measurements in solution reveal an overall similarity in the molecular envelope of thrombin and thrombin-PPACK, which differs from the crystal structure of thrombin. Molecular dynamics simulations performed with thrombin lead to different conformations than the one observed in the crystal structure. These data shed light on the diversity of thrombin conformers not previously observed in crystal structures with distinguished catalytic and conformational behaviors, which might have direct implications on novel strategies to design direct thrombin inhibitors

    Identification of DHX9 as a cell cycle regulated nucleolar recruitment factor for CIZ1

    Get PDF
    CIP1-interacting zinc finger protein 1 (CIZ1) is a nuclear matrix associated protein that facilitates a number of nuclear functions including initiation of DNA replication, epigenetic maintenance and associates with the inactive X-chromosome. Here, to gain more insight into the protein networks that underpin this diverse functionality, molecular panning and mass spectrometry are used to identify protein interaction partners of CIZ1, and CIZ1 replication domain (CIZ1-RD). STRING analysis of CIZ1 interaction partners identified 2 functional clusters: ribosomal subunits and nucleolar proteins including the DEAD box helicases, DHX9, DDX5 and DDX17. DHX9 shares common functions with CIZ1, including interaction with XIST long-non-coding RNA, epigenetic maintenance and regulation of DNA replication. Functional characterisation of the CIZ1-DHX9 complex showed that CIZ1-DHX9 interact in vitro and dynamically colocalise within the nucleolus from early to mid S-phase. CIZ1-DHX9 nucleolar colocalisation is dependent upon RNA polymerase I activity and is abolished by depletion of DHX9. In addition, depletion of DHX9 reduced cell cycle progression from G1 to S-phase in mouse fibroblasts. The data suggest that DHX9-CIZ1 are required for efficient cell cycle progression at the G1/S transition and that nucleolar recruitment is integral to their mechanism of action

    Limb proportions show developmental plasticity in response to embryo movement

    Get PDF
    Animals have evolved limb proportions adapted to different environments, but it is not yet clear to what extent these proportions are directly influenced by the environment during prenatal development. The developing skeleton experiences mechanical loading resulting from embryo movement. We tested the hypothesis that environmentally-induced changes in prenatal movement influence embryonic limb growth to alter proportions. We show that incubation temperature influences motility and limb bone growth in West African Dwarf crocodiles, producing altered limb proportions which may, influence post-hatching performance. Pharmacological immobilisation of embryonic chickens revealed that altered motility, independent of temperature, may underpin this growth regulation. Use of the chick also allowed us to merge histological, immunochemical and cell proliferation labelling studies to evaluate changes in growth plate organisation, and unbiased array profiling to identify specific cellular and transcriptional targets of embryo movement. This disclosed that movement alters limb proportions and regulates chondrocyte proliferation in only specific growth plates. This selective targeting is related to intrinsic mTOR (mechanistic target of rapamycin) pathway activity in individual growth plates. Our findings provide new insights into how environmental factors can be integrated to influence cellular activity in growing bones and ultimately gross limb morphology, to generate phenotypic variation during prenatal development

    Validity of small-scale yielding regime in notched-cracked geometries

    No full text
    This paper proposes a procedure based on crack tip opening displacement (CTOD) to define the boundary of the small-scale yielding (SSY) regime. Numerical modelling was applied to notched samples with different notch radii, under both plane stress and plane strain conditions, with and without crack flank contact. Results indicate that an increase in notch radius promotes the validity of SSY. The increase in crack length promotes a progressive decrease of SSY's validaty, particularly in notched specimens. Most of the situations studied fall outside the SSY regime, which reinforces the importance of verifying the applicability of LEFM to fatigue crack growth rate calculations

    3-D technology used to accurately understand equine ileocolonic aganglionosis.

    No full text
    Ileocolonic aganglionosis (ICA) is the congenital and hereditary absence of neurons that constitute the enteric nervous system and has been described in various species including humans - Hirschsprung's disease - and horses - overo lethal white syndrome (OLWS). Hirschsprung's disease affects circa 1 in 5,000 live births. At best, this disease means an inability to absorb nutrients from food (humans). At worse, in horses, it always means death. Despite our general understanding of the functional mechanisms underlying ICA, there is a paucity of reliable quantitative information about the structure of myenteric and submucosal neurons in healthy horses and there are no studies on horses with ICA. In light of these uncertainties, we have used design-based stereology to describe the 3-D structure - total number and true size - of myenteric and submucosal neurons in the ileum of ICA horses. Our study has shown that ICA affects all submucosal neurons and 99% of myenteric neurons. The remaining myenteric neurons (0.56%) atrophy immensely, i.e. 63.8%. We believe this study forms the basis for further research, assessing which subpopulation of myenteric neurons are affected by ileocolonic aganglionosis, and we would like to propose a new nomenclature to distinguish between a complete absence of neurons - aganglionosis - and a weaker form of the disease which we suggest naming 'hypoganglionosis'. Our results are a step forward in understanding this disease structurally

    3-D technology used to accurately understand equine ileocolonic aganglionosis.

    No full text
    Ileocolonic aganglionosis (ICA) is the congenital and hereditary absence of neurons that constitute the enteric nervous system and has been described in various species including humans - Hirschsprung's disease - and horses - overo lethal white syndrome (OLWS). Hirschsprung's disease affects circa 1 in 5,000 live births. At best, this disease means an inability to absorb nutrients from food (humans). At worse, in horses, it always means death. Despite our general understanding of the functional mechanisms underlying ICA, there is a paucity of reliable quantitative information about the structure of myenteric and submucosal neurons in healthy horses and there are no studies on horses with ICA. In light of these uncertainties, we have used design-based stereology to describe the 3-D structure - total number and true size - of myenteric and submucosal neurons in the ileum of ICA horses. Our study has shown that ICA affects all submucosal neurons and 99% of myenteric neurons. The remaining myenteric neurons (0.56%) atrophy immensely, i.e. 63.8%. We believe this study forms the basis for further research, assessing which subpopulation of myenteric neurons are affected by ileocolonic aganglionosis, and we would like to propose a new nomenclature to distinguish between a complete absence of neurons - aganglionosis - and a weaker form of the disease which we suggest naming 'hypoganglionosis'. Our results are a step forward in understanding this disease structurally
    corecore