6,981 research outputs found

    The Three Loop Two-Mass Contribution to the Gluon Vacuum Polarization

    Full text link
    We calculate the two-mass contribution to the 3-loop vacuum polarization of the gluon in Quantum Chromodynamics at virtuality p2=0p^2 = 0 for general masses and also present the analogous result for the photon in Quantum Electrodynamics.Comment: 5 pages Late

    The two-mass contribution to the three-loop pure singlet operator matrix element

    Full text link
    We present the two-mass QCD contributions to the pure singlet operator matrix element at three loop order in x-space. These terms are relevant for calculating the structure function F2(x,Q2)F_2(x,Q^2) at O(αs3)O(\alpha_s^3) as well as for the matching relations in the variable flavor number scheme and the heavy quark distribution functions at the same order. The result for the operator matrix element is given in terms of generalized iterated integrals that include square root letters in the alphabet, depending also on the mass ratio through the main argument. Numerical results are presented.Comment: 28 papges Latex, 3 figure

    Gravitational Waves from Wobbling Pulsars

    Full text link
    The prospects for detection of gravitational waves from precessing pulsars have been considered by constructing fully relativistic rotating neutron star models and evaluating the expected wave amplitude hh from a galactic source. For a "typical" neutron matter equation of state and observed rotation rates, it is shown that moderate wobble angles may render an observable signal from a nearby source once the present generation of interferometric antennas becomes operative.Comment: PlainTex, 7 pp. , no figures, IAG/USP Rep. 6

    The unpolarized two-loop massive pure singlet Wilson coefficients for deep-inelastic scattering

    Full text link
    We calculate the massive two--loop pure singlet Wilson coefficients for heavy quark production in the unpolarized case analytically in the whole kinematic region and derive the threshold and asymptotic expansions. We also recalculate the corresponding massless two--loop Wilson coefficients. The complete expressions contain iterated integrals with elliptic letters. The contributing alphabets enlarge the Kummer-Poincar\'e letters by a series of square-root valued letters. A new class of iterated integrals, the Kummer-elliptic integrals, are introduced. For the structure functions F2F_2 and FLF_L we also derive improved asymptotic representations adding power corrections. Numerical results are presented.Comment: 42, pages Latex, 8 Figure

    Coalescence Rate of Supermassive Black Hole Binaries Derived from Cosmological Simulations: Detection Rates for LISA and ET

    Full text link
    The coalescence history of massive black holes has been derived from cosmological simulations, in which the evolution of those objects and that of the host galaxies are followed in a consistent way. The present study indicates that supermassive black holes having masses greater than ∌109M⊙\sim 10^{9} M_{\odot} underwent up to 500 merger events along their history. The derived coalescence rate per comoving volume and per mass interval permitted to obtain an estimate of the expected detection rate distribution of gravitational wave signals ("ring-down") along frequencies accessible by the planned interferometers either in space (LISA) or in the ground (Einstein). For LISA, in its original configuration, a total detection rate of about 15yr−115 yr^{-1} is predicted for events having a signal-to-noise ratio equal to 10, expected to occur mainly in the frequency range 4−9mHz4-9 mHz. For the Einstein gravitational wave telescope, one event each 14 months down to one event each 4 years is expected with a signal-to-noise ratio of 5, occurring mainly in the frequency interval 10−20Hz10-20 Hz. The detection of these gravitational signals and their distribution in frequency would be in the future an important tool able to discriminate among different scenarios explaining the origin of supermassive black holes.Comment: 18 pages, 7 figures, to appear in the IJMP

    Evidence that the degree of band 3 phosphorylation modulates human erythrocytes nitric oxide efflux – in vitro model of hyperfibrinogenemia

    Get PDF
    © 2011 – IOS Press and the authors. All rights reservedRecent evidence has shown that plasma fibrinogen, a major cardiovascular risk factor, interacts with the erythrocyte membrane and acts to influence blood flow via erythrocyte nitric oxide (NO) modulation. In the present pioneer in-vitro study, whole blood samples were harvested from healthy subjects and aliquots were incubated in the absence (control aliquots) and presence of fibrinogen at different degrees of band 3 phosphorylation, and the levels of NO, nitrite, nitrate and S-nitroglutathione (GSNO) were determined. Hyperfibrinogenemia interferes with erythrocyte NO mobilization without changing its efflux in a way that seems to be dependent of the degree of band 3 phosphorylation. In presence of higher fibrinogen concentrations the NO efflux is reinforced when band 3 is phosphorylated (p < 0.001). Higher levels of nitrite, nitrate and GSNO were documented (p < 0.05). However, the mechanisms by which fibrinogen signalling modulates erythrocyte function remain to be clarified and are currently under study. These conditions may be considered an approach to be followed in blood storage for transfusions.This study was supported by grants from the FCT - Fundação para a CiĂȘncia e a Tecnologia (project reference PTDC/SAU-OSM/73449/2006

    The O(α2)O(\alpha^2) Initial State QED Corrections to e+e−e^+e^- Annihilation to a Neutral Vector Boson Revisited

    Full text link
    We calculate the non-singlet, the pure singlet contribution, and their interference term, at O(α2)O(\alpha^2) due to electron-pair initial state radiation to e+e−e^+ e^- annihilation into a neutral vector boson in a direct analytic computation without any approximation. The correction is represented in terms of iterated incomplete elliptic integrals. Performing the limit s≫me2s \gg m_e^2 we find discrepancies with the earlier results of Ref.~\cite{Berends:1987ab} and confirm results obtained in Ref.~\cite{Blumlein:2011mi} where the effective method of massive operator matrix elements has been used, which works for all but the power corrections in m2/sm^2/s. In this way, we also confirm the validity of the factorization of massive partons in the Drell-Yan process. We also add non-logarithmic terms at O(α2)O(\alpha^2) which have not been considered in \cite{Berends:1987ab}. The corrections are of central importance for precision analyzes in e+e−e^+e^- annihilation into γ∗/Z∗\gamma^*/Z^* at high luminosity.Comment: 4 pages Latex, 2 Figures, several style file

    The Two-mass Contribution to the Three-Loop Gluonic Operator Matrix Element Agg,Q(3)A_{gg,Q}^{(3)}

    Get PDF
    We calculate the two-mass QCD contributions to the massive operator matrix element Agg,QA_{gg,Q} at O(αs3)\mathcal{O} (\alpha_s^3) in analytic form in Mellin NN- and zz-space, maintaining the complete dependence on the heavy quark mass ratio. These terms are important ingredients for the matching relations of the variable flavor number scheme in the presence of two heavy quark flavors, such as charm and bottom. In Mellin NN-space the result is given in the form of nested harmonic, generalized harmonic, cyclotomic and binomial sums, with arguments depending on the mass ratio. The Mellin inversion of these quantities to zz-space gives rise to generalized iterated integrals with square root valued letters in the alphabet, depending on the mass ratio as well. Numerical results are presented.Comment: 99 pages LATEX, 2 Figure
    • 

    corecore