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Abstract. Recent evidence has shown that plasma fibrinogen, a major cardiovascular risk factor, interacts with the erythrocyte
membrane and acts to influence blood flow via erythrocyte nitric oxide (NO) modulation. In the present pioneer in-vitro study,
whole blood samples were harvested from healthy subjects and aliquots were incubated in the absence (control aliquots) and
presence of fibrinogen at different degrees of band 3 phosphorylation, and the levels of NO, nitrite, nitrate and S-nitroglutathione
(GSNO) were determined.

Hyperfibrinogenemia interferes with erythrocyte NO mobilization without changing its efflux in a way that seems to be
dependent of the degree of band 3 phosphorylation. In presence of higher fibrinogen concentrations the NO efflux is reinforced
when band 3 is phosphorylated (p < 0.001). Higher levels of nitrite, nitrate and GSNO were documented (p < 0.05). However,
the mechanisms by which fibrinogen signalling modulates erythrocyte function remain to be clarified and are currently under
study. These conditions may be considered an approach to be followed in blood storage for transfusions.
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1. Introduction

Vascular nitric oxide (NO) traverses red blood cells by simple random diffusion and it may either
be stored or return to the bloodstream as an active S-nitrosothiol molecule. It interacts with several
components of the erythrocyte membrane, as well as with hemoglobin [16, 27, 28]. The major stable
metabolites resulting from NO oxidation, represented by NOx, include nitrite (NO2−) and nitrate (NO3−).
Glutathione is an antioxidant molecule with a thiol group which binds to NO yielding S-nitrosothiols
(GSNO), another molecular form of NO storage [38].

Vascular NO has been identified as having a key role in blood pressure regulation, being synthesised by
inducible nitric oxide synthase in cases of arterial hypertension, vascular pathologies and inflammation
conditions with deleterious effects [6, 40]. It has not only a key role in blood pressure regulation but
also in blood flow regulation [17, 26]. In addition, according to the literature there is a wide range of
other conditions inducing NO secretion. Some examples include different drugs used in cardiovascular
medicine (e.g. corticosteroids) as well as during physical activity (e.g. stress test) [5, 11, 23, 30, 39, 42].

Additionally, fibrinogen is a plasma protein involved in haemostasis, cell adhesion and inflammation,
also known to behave as a hemorheological factor by promoting the formation of erythrocyte aggregates
[2, 15, 20, 25, 29, 32]. The hyperaggregation state induced by fibrinogen takes place in various metabolic
and cardiovascular diseases such as diabetes, arterial hypertension and atherosclerosis [21]. Moreover, a
linkage between erythrocyte adhesiveness and plasma fibrinogen levels (under inflammatory conditions)
has been documented in subjects with atherosclerotic risk factors [34].

In vitro, we have observed a significant increase in erythrocyte GSNO, nitrite and nitrate concentrations
in the presence of fibrinogen at physiological levels, when compared with blood samples in the absence
of this plasma protein. On the contrary, the erythrocyte NO efflux decreases in the presence of fibrinogen
at the same range of concentrations.

Comprising up to 25% of the erythrocyte membrane, band 3 is a predominant protein and the major
mediator of anion transport in the human erythrocyte membrane. It spans the membrane asymmetrically
and participates in a number of erythrocyte events regulated by its degree of phosphorylation. Band
3 phosphorylation is promoted by tyrosine-kinases (PTK, e.g. syk and lyn) and dephosphorylation by
tyrosine-phosphatases (PTP) [4]. We have documented that band 3 is directly involved in NO efflux and
mobilization, by modulation of its phosphorylation degree [7].

Considering the fact that all degrees of inflammation are associated with reactive oxygen and nitrogen
species, along with an hyperfibrinogenemia state, we might raise the hypothesis of concentration changes
occurring in NO and NO-derived molecules. However, no work has yet assessed the effect of high levels
of plasma fibrinogen on the erythrocyte nitric oxide metabolism (nitrite, nitrate) and mobilization (S-
nitroso-glutathione), on the dependence of the degree of band 3 phosphorylation, which was the purpose
of this study.

2. Methods

2.1. Chemicals

The chosen concentrations for fibrinogen were based on its physiological levels and previous studies
[36]. The human fibrinogen was purchased from Sigma (Poole, UK). p72syk inhibitor and aminogenistein
(p53/56lyn inhibitor) were purchased from Sigma (St Louis, MO, USA), and calpeptin (PTP inhibitor)
was purchased from Calbiochem (Darmstadt, Germany).
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The study was performed according to the guidelines of Clinical Hemorheology and Microcirculation
[1].

2.2. Experimental design

Human venous blood samples were collected from the forearm vein of fifteen healthy Caucasian men
after informed consent. The blood container tubes were prepared with 10 IU ml−1 of sodium heparin
(anticoagulant). After that, the blood was divided in ten 1 mL aliquots and centrifuged at 11,000 rpm for
1 minute in Biofuge 15 centrifuge (Heraeus, Sepatech, Osterode, DE). 5 �L of plasma was removed from
one aliquot and the same volume of fibrinogen solution was added. After mixing, other centrifugation step
was done, and plasma removed for fibrinogen concentration determination and the same procedure for the
control aliquot. From the other four aliquots, 5�L of plasma was taken and replaced by the same volume
in order to achieve 10� M final concentration of Syk inhibitor, AMGT and calpeptin. To the remaining
four fibrinogen solutions, band 3 effectors were added to achieve the10 �M final concentration of each
one. Blood samples aliquots were then incubated during 30 min at room temperature after slight agitation,
in the absence and presence of fibrinogen.

2.3. Determination of fibrinogen concentration by clot-based technology

Plasma fibrinogen concentrations were evaluated using the Fibritimer Dade Behring BF TII based in
the Clot-based technology.

2.4. Measurement of NO by an amperometric method

Following incubation, erythrocyte suspensions were centrifuged and sodium chloride 0.9% at pH 7.0
was added in order to compose a hematocrit of 0.05%. The suspension was mixed by gently inversion of
tubes.

For amperometric NO quantification we used the amino-IV sensor (Innovative Instruments Inc. FL,
USA), a method previously described by us [9]. NO diffuses through the gas-permeable membrane
tripleCOAT of the sensor probe and it is then oxidized at the working platinum electrode, resulting in
an electric current. The redox current is proportional to the NO concentration outside the membrane and
is continuously monitorized with an inNOTM software (version 1.9 from Innovative Instruments Inc.,
FL, USA) and connected to a computer. Calibration of the NO sensor was performed daily. For each
experiment, the NO sensor was immersed vertically in the erythrocyte suspension vials and allowed to
stabilize for 30 min to achieve NO basal levels. 30 �l of acetylcholine (ACh, purchased from Sigma
St. Louis, MO, USA) was added to the erythrocyte suspensions aliquots in order to achieve the final
concentrations of ACh 10 �M and the NO released from erythrocytes was registered. Data were recorded
from constantly stirred suspensions at room temperature.

2.5. Measurement of nitrite/nitrate concentration using the spectrophotometric griess method

After the incubation period the erythrocytes suspensions, performed as described above, were cen-
trifuged at 9600 g during 1 minute using the Biofuge 15 Heraeus centrifuge. The supernatants were then
separated from the pellet (packaged erythrocytes).
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Nitrite and nitrate levels in the intra-erythrocyte compartment were determined, as previously published
by us [10], after submitting the pellet of each suspension to hemolysis and hemoglobin precipitation
(erythrocyte cytoplasm values registered). Hemolysis was induced with distilled water and hemoglobin
precipitation with ethanol and chloroform.

Nitrite concentrations were measured with the spectrophotometric Griess reaction, at 548 nm. For
nitrate measurement, this compound was first reduced to nitrites in the presence of nitrate reductase [18].

2.6. Measurement of S-nitrosoglutathione (GSNO)

Colorimetric solutions containing a mixture of sulfanilic acid (B component of Griess reagent) and
NEDD (A component of Griess reagent), consisting of 57.7 mM of sulfanilic acid and 1 mg/mL of
NEDD, were dissolved in phosphate-buffered solution, pH 7.4 (PBS). To constitute the 10 mM HgCl2
(Aldrich) mercury ion stock solutions were prepared in 0.136 g/50 mL of dimethyl sulfoxide (DMSO)
(Aldrich). GSNO was diluted to the wanted concentration in the colorimetric analysis solutions. Various
concentrations of mercury were then added to a final concentration of 100 �M. Following gentile shaking
the solution was let to stand for twenty minutes. A control spectrum was measured by spectrophotometry
at 496 nm against a solution without mercury ion. 300 �l of erythrocyte suspensions were added to the
reaction mixture and GSNO concentrations were obtained as described by Cook [12].

2.7. Statistical analysis

Data are expressed as means ± SD. Student’s paired t-tests were used to compare values between
different aliquots of erythrocyte suspensions. Statistical analysis was conducted using the Statistical
Package for the Social Sciences (SPSS) software, 16.0 version. One-way analysis of variance tests and
paired t-tests were applied to assess statistical significance amongst samples. Bonferroni post-hoc tests
were conducted when appropriate. Statistical significance was set at a p < 0.05 level.

3. Results

3.1. Effects of in vitro hyperfibrinogenemia and band 3 phosphorylation/dephosphorylation effectors
on nitric oxide levels (Fig. 1)

Statistically significant higher values were found for the erythrocyte NO efflux measured in aliquots
incubated with band 3 modulators of its degree of phosphorylation, when compared with the control
suspensions, but not under a hyperfibrinogenemia state.

In the presence of high fibrinogen levels (mean ± SD: 480.6 ± 114 mg/dL) the levels for NO accounted
for 1.91 ± 0.39 nM, when compared with the control aliquots without fibrinogen (1.63 ± 0.49 nM,
p = 0.15).

With band 3 effectors the following NO levels were observed: (i) 2.20 ± 0.38 nM in the presence of Syk
inhibitor 10 �M (p = 0.02, against control), (ii) 2.11 ± 0.38 nM in the presence of AMGT 10 �M (p = 0.02,
against control), and (iii) 2.35 ± 0.27 nM in the presence of calpeptin 10 �M (p = 0.005, against control).

In the presence of additional fibrinogen, no significantly changes were observed for the nitric oxide
levels, except for band 3 phosphorylation inibitors when compared with those values obtained only with
fibrinogen.
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Fig. 1. Effects of high fibrinogen and band 3 modulators on nitric oxide levels in erythrocyte suspensions. Values are mean ±
SD (n = 15).

Fig. 2. Changes in nitrite levels in erythrocyte suspensions incubated with high fibrinogen and band 3 modulators. Values are
mean ± SD (n = 15).

In the presence of additional fibrinogen, no changes were observed as to the nitric oxide levels on
the dependence of band 3 modulators when compared with those values obtained in its absence. The
following concentrations for NO were disclosed: 1.95 ± 0.36 nM in the presence of Syk inhibitor 10 �M
(p = 0.20, against Syk inhibitor aliquot), (ii) 1.99 ± 0.27 nM in the presence of AMGT 10 �M (p = 0.43,
against AMGT aliquot), and (iii) 2.57 ± 0.62 nM in the presence of calpeptin 10 �M (p = 0.25, against
calpeptin aliquot).

3.2. Effects of in vitro hyperfibrinogenemia and band 3 phosphorylation/dephosphorylation effectors
on erythrocyte nitrite levels (Fig. 2)

There was a statistically significant increase in nitrite levels of erythrocyte suspensions, in the presence
of fibrinogen and all band 3 phosphorylation degree modulators, when compared with both control
aliquots and erythrocytes suspensions without additional fibrinogen.
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To specify, in the presence of hyperfibrinogenemia (mean ± SD: 480.6 ± 114 mg/dL) the levels for
nitrite accounted for 37.10 ± 7.59 �M, when compared with the control aliquots without fibrinogen
(17.70 ± 5.18 �M, p < 0.00001). In the presence of band 3 effectors the following nitrite levels were dis-
closed: (i) 35.55 ± 3.02 �M with Syk inhibitor (10 �M p = 0.00002, against control), (ii) 39.45 ± 8.51 �M
with AMGT 10 �M (p = 0.00004, against control), and (iii) 38.50 ± 9.51 �M with calpeptin 10 �M
(p = 0.0001, against control).

In the presence of additional fibrinogen, the following concentrations for nitrite were obtained:
48.35 ± 7.79 �M in the presence of Syk inhibitor 10 �M (p = 0.001, against Syk inhibitor 10 �M aliquot),
(ii) 44.30 ± 9.54 �M in the presence of AMGT 10 �M (p = 0.038, against AMGT10 �M aliquot), and
(iii) 47.55 ± 7.64 �M in the presence of calpeptin 10 �M (p = 0.066, against calpeptin 10 �M aliquot).

3.3. Effects of in vitro hyperfibrinogenemia and band 3 phosphorylation/dephosphorylation effectors
on erythrocyte nitrate levels (Fig. 3)

A statistically significant increase in nitrate levels was observed in the presence of fibrinogen and all
band 3 phosphorylation degree modulators, when compared with both control aliquots and erythrocytes
suspensions without fibrinogen.

To specify, in the presence of hyperfibrinogenemia, (mean ± SD: 480.6 ± 114 mg/dL) the levels for
nitrate accounted for 35.10 ± 10.19 �M, when compared with the control aliquots without fibrinogen
(18.95 ± 4.98 �M, p < 0.0005). In the presence of band 3 effectors the following nitrite levels were dis-
closed: (i) 34.10 ± 6.0 �M with Syk inhibitor 10 �M (p = 0.0003, against control), (ii) 38.85 ± 5.79 �M
with AMGT 10 �M (p < 0.00001, against control), and (iii) 37.65 ± 9.65 �M with calpeptin 10 �M
(p = 0.0002, against control).

In the presence of additional fibrinogen, the following concentrations for nitrate were obtained:
46.65 ± 10.82 �M in the presence of Syk inhibitor 10 �M (p = 0.001, against Syk inhibitor aliquot),
(ii) 42.95 ± 9.5 �M in the presence of AMGT 10 �M (p = 0.10, against AMGT aliquot), and (iii)
48.84 ± 7.71 �M in the presence of calpeptin 10 �M (p = 0.02, against calpeptin aliquot).

Fig. 3. Changes in nitrate levels in erythrocyte suspensions incubated with high fibrinogen and band 3 modulators. Values are
mean ± SD (n = 15).
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Fig. 4. Effects of high fibrinogen and band 3 modulators concentrations on S-nitrosoglutathione levels in erythrocyte suspensions.
Values are mean ± SD (n = 15).

3.4. Effects of in vitro hyperfibrinogenemia and band 3 phosphorylation/dephosphorylation effectors
on erythrocyte S-nitrosoglutathione (Fig. 4)

In the presence of hyperfibrinogenemia (mean ± SD: 480.6 ± 114 mg/dL), the levels for GSNO
accounted for 10.41 ± 1.85 mg/dL, when compared with the control aliquots without fibrinogen
(8.91 ± 1.44 mg/dL, p = 0.08). In the presence of band 3 effectors the following GSNO levels
were disclosed: (i) 11.96 ± 3.86 mg/dL with Syk inhibitor 10 �M (p = 0.06, against control), (ii)
10.97 ± 3.82 mg/dL with AMGT 10 �M (p = 13, against control), and (iii) 9.45 ± 2.96 mg/dL with
calpeptin 10 �M (p = 0.61, against control).

In the presence of additional fibrinogen, the following concentrations for GSNO were obtained:
9.13 ± 2.47 mg/dL in the presence of Syk inhibitor 10 �M (p = 0.04, against Syk inhibitor 10�M aliquot),
(ii) 10.87 ± 2.95 mg/dL in the presence of AMGT 10 �M (p = 0.95, against AMGT 10 �M aliquot), and
(iii) 10.21 ± 2.95 mg/dL in the presence of calpeptin 10 �M (p = 0.55, against calpeptin 10 �M aliquot).

4. Discussion

To the best of our knowledge, this is the first study to explore an association between fibrinogen and the
degree of band 3 phosphorylation on the modulation of erythrocyte nitric oxide efflux and mobilization.
We demonstrated that increasing fibrinogen concentrations (hyperfibrinogenemia) is able to module the
erythrocyte NO mobilization through a signalling pathway that is dependent on the band 3 phosphorylation
status. With high fibrinogen concentrations present in the experimental medium the main findings were
an increase in the nitric oxide oxidation molecules, such as nitrite and nitrate, and higher levels of a
NO scavenger such as GSNO, along with unaltered NO efflux. These results may be explained by the
intra-erythrocyte reactions from NO well-known reservoir molecules and via metabolic reactions, as a
way to redistribute NO-derived molecules [19]. For example, the described reaction between GSNO
and desoxygenated hemoglobin yielding glutathione, methahemoglobin and NO [37], seems not to be
favoured in the presence of high fibrinogen concentrations.

Furthermore, it has been formerly showed by others that the erythrocyte NO flux is mediated by band
3 protein, with no efflux occurring when methemoglobin and deoxygenated hemoglobin bind to the
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cytoskeleton [19]. In view of this, a signal transduction mechanism associating plasma fibrinogen with
band 3 protein may be hypothesized in order to explain the lower erythrocyte ability to release NO, in
conjunction with the increased intra-erythrocyte amount of nitrite, nitrate and GSNO.

The results of the present study evidenced that phosphorylated (in the presence of calpeptin) or despho-
sphorylated band 3 (presence of Syk inhibitor or AMGT) significantly increase the erythrocyte efflux,
nitrites and nitrates levels but those values are not changed by the presence of high fibrinogen concentra-
tions. The slight increase on GSNO in the presence of Syk inibitor was not verified either with AMGT
or calpeptin. However, at high fibrinogen concentrations we observed a slight decrease in GSNO only
in the presence of Syk inhibitor, thereby suggesting an antagonism effect due to the external fibrinogen
at the erythrocyte membrane. A significantly increase in the NO efflux was verified with high fibrinogen
concentration and phosphorylated band 3 protein (presence of calpeptine). Thus, these results document
molecular dependence between fibrinogen signalling and the degree of band 3 phosphorylation on the
erythrocyte NO mobilization. We may then raise the hypothesis that, with regard to the fibrinogen antiox-
idant properties, changes in NO metabolism documented in our study might be associated with a redox
state induced by fibrinogen in a similar way as dithiothreitol, as previously showed by us [24].

Overall, we can therefore assume that the presence of fibrinogen interferes with erythrocyte NO efflux
and mobilization as well as the status of band 3 phosphorylation, but together they seem to have any
interaction. In this context, we have additionally documented that acetylcholine is able to increase the
erythrocyte NO efflux and modulate signal transduction pathways influenced by the degree of band 3
phosphorylation [8].

At the erythrocyte membrane, band 3 proteins are linked with cytoskeleton protein 4.2 which in turn is
associated with the Rh macrocomplex, in which CD47 is one of the components. Any alterations in band
3 conformation induced by phosphorylation or desphorylation may exert an impact on the erythrocyte
membrane structure [13].

We have verified a binding between fibrinogen and CD47 [35] which may bring a new explanation
for the purported fibrinogen effects on NO efflux and mobilization, based on potential conformational
changes induced on these two macro complexes proteins of the erythrocyte membrane. For instance, these
possible changes in protein conformation are sufficient to perturb the band 3 conformations obtained by
strong covalent bridging of inorganic phosphate molecules or ligation breakdown. On the contrary, when
the degree of band 3 phosphorylation was not disturbed, fibrinogen was able to maintain the NO efflux
by a still unknown mechanism. As mentioned above, this has been previously documented by us at
physiological fibrinogen concentrations and presently in an experimental model of hyperfibrinogenemia.
We may then raise the hypothesis that the band 3 phosphorylation-dependent mechanism of NO efflux
exists under conditions of external fibrinogen binding to red blood cells.

It is well documented that when red blood cells are stored, this condition depletes them from S-
nitrosylated hemoglobin [22]. This modification may be responsible for the impaired ability of transfused
blood to deliver oxygen [33]. However, our results may be considered as an approach to be followed in
blood storage for transfusion, which may impair the progress of band 3 protein modifications [3, 14, 31,
41].

The precise mechanisms by which plasma fibrinogen interacts with the erythrocyte membrane in
absence and presence of band 3 modulators of its phosphorylation, to mobilize NO from store molecules
into its oxidative metabolites (and vice-versa), are still vague.

Further studies are compulsory to deepen this topic of major impact in human inflammatory conditions
and blood storage.
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