research

Coalescence Rate of Supermassive Black Hole Binaries Derived from Cosmological Simulations: Detection Rates for LISA and ET

Abstract

The coalescence history of massive black holes has been derived from cosmological simulations, in which the evolution of those objects and that of the host galaxies are followed in a consistent way. The present study indicates that supermassive black holes having masses greater than ∼109M⊙\sim 10^{9} M_{\odot} underwent up to 500 merger events along their history. The derived coalescence rate per comoving volume and per mass interval permitted to obtain an estimate of the expected detection rate distribution of gravitational wave signals ("ring-down") along frequencies accessible by the planned interferometers either in space (LISA) or in the ground (Einstein). For LISA, in its original configuration, a total detection rate of about 15yr−115 yr^{-1} is predicted for events having a signal-to-noise ratio equal to 10, expected to occur mainly in the frequency range 4−9mHz4-9 mHz. For the Einstein gravitational wave telescope, one event each 14 months down to one event each 4 years is expected with a signal-to-noise ratio of 5, occurring mainly in the frequency interval 10−20Hz10-20 Hz. The detection of these gravitational signals and their distribution in frequency would be in the future an important tool able to discriminate among different scenarios explaining the origin of supermassive black holes.Comment: 18 pages, 7 figures, to appear in the IJMP

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016
    Last time updated on 12/11/2016