20 research outputs found

    Oscillatory Dynamics of Cell Cycle Proteins in Single Yeast Cells Analyzed by Imaging Cytometry

    Get PDF
    Progression through the cell division cycle is orchestrated by a complex network of interacting genes and proteins. Some of these proteins are known to fluctuate periodically during the cell cycle, but a systematic study of the fluctuations of a broad sample of cell-cycle proteins has not been made until now. Using time-lapse fluorescence microscopy, we profiled 16 strains of budding yeast, each containing GFP fused to a single gene involved in cell cycle regulation. The dynamics of protein abundance and localization were characterized by extracting the amplitude, period, and other indicators from a series of images. Oscillations of protein abundance could clearly be identified for Cdc15, Clb2, Cln1, Cln2, Mcm1, Net1, Sic1, and Whi5. The period of oscillation of the fluorescently tagged proteins is generally in good agreement with the inter-bud time. The very strong oscillations of Net1 and Mcm1 expression are remarkable since little is known about the temporal expression of these genes. By collecting data from large samples of single cells, we quantified some aspects of cell-to-cell variability due presumably to intrinsic and extrinsic noise affecting the cell cycle

    Phenotype Fingerprinting Suggests the Involvement of Single-Genotype Consortia in Degradation of Aromatic Compounds by Rhodopseudomonas palustris

    Get PDF
    Anaerobic degradation of complex organic compounds by microorganisms is crucial for development of innovative biotechnologies for bioethanol production and for efficient degradation of environmental pollutants. In natural environments, the degradation is usually accomplished by syntrophic consortia comprised of different bacterial species. This strategy allows consortium organisms to reduce efforts required for maintenance of the redox homeostasis at each syntrophic level. Cellular mechanisms that maintain the redox homeostasis during the degradation of aromatic compounds by one organism are not fully understood. Here we present a hypothesis that the metabolically versatile phototrophic bacterium Rhodopseudomonas palustris forms its own syntrophic consortia, when it grows anaerobically on p-coumarate or benzoate as a sole carbon source. We have revealed the consortia from large-scale measurements of mRNA and protein expressions under p-coumarate, benzoate and succinate degrading conditions using a novel computational approach referred as phenotype fingerprinting. In this approach, marker genes for known R. palustris phenotypes are employed to determine the relative expression levels of genes and proteins in aromatics versus non-aromatics degrading condition. Subpopulations of the consortia are inferred from the expression of phenotypes and known metabolic modes of the R. palustris growth. We find that p-coumarate degrading conditions may lead to at least three R. palustris subpopulations utilizing p-coumarate, benzoate, and CO2 and H2. Benzoate degrading conditions may also produce at least three subpopulations utilizing benzoate, CO2 and H2, and N2 and formate. Communication among syntrophs and inter-syntrophic dynamics in each consortium are indicated by up-regulation of transporters and genes involved in the curli formation and chemotaxis. The N2-fixing subpopulation in the benzoate degrading consortium has preferential activation of the vanadium nitrogenase over the molybdenum nitrogenase. This subpopulation in the consortium was confirmed in an independent experiment by consumption of dissolved nitrogen gas under the benzoate degrading conditions

    Multiple syntrophic interactions in a terephthalate-degrading methanogenic consortium

    No full text
    Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium inside a hyper-mesophilic (that is, between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified b-oxidation to H-2/CO2 and acetate. These intermediates are converted to CH4/CO2 by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to CO2/H-2 and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H-2-producing syntroph-methanogen partnership that may serve to improve community stability. The ISME Journal (2011) 5, 122-130; doi:10.1038/ismej.2010.125; published online 5 August 201

    Die Kreislaufstörungen der Leber

    No full text

    Gaze-Based Assessments of Vigilance and Avoidance in Social Anxiety: a Review

    No full text
    © 2017, Springer Science+Business Media, LLC. Purpose of Review: A broad base of research has sought to identify the biases in selective attention which characterize social anxiety, with the emergent use of eye tracking-based methods. This article seeks to provide a review of eye tracking studies examining selective attention biases in social anxiety. Recent Findings: Across a number of contexts, social anxiety may be associated with a mix of both vigilant and avoidant patterns of attention with respect to the processing of emotional social stimuli. Socially anxious individuals may additionally avoid maintaining eye contact and may exhibit a generalized vigilance via hyperscanning of their environment. Summary: The findings highlight the utility of eye tracking methods for increasing understanding of the gaze-based biases which characterize social anxiety disorder, with promising avenues for future research
    corecore