193 research outputs found

    Neutron-induced background by an alpha-beam incident on a deuterium gas target and its implications for the study of the 2H(alpha,gamma)6Li reaction at LUNA

    Full text link
    The production of the stable isotope Li-6 in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological Li-6 plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of Li-7 abundances and would point to a predominantly primordial origin of Li-6, contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang Li-6 production must be revisited. The main production channel for Li-6 in the Big Bang is the 2H(alpha,gamma)6Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an {\alpha}-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the 2H(d,n)3He reaction. Due to the ultra-low laboratory neutron background at LUNA, the effect of this weak flux of 2-3 MeV neutrons on well-shielded high-purity germanium detectors has been studied in detail. Data have been taken at 280 and 400 keV alpha-beam energy and for comparison also using an americium-beryllium neutron source.Comment: Submitted to EPJA; 13 pages, 8 figure

    22Ne and 23Na ejecta from intermediate-mass stars: The impact of the new LUNA rate for 22Ne(p,gamma)23Na

    Get PDF
    We investigate the impact of the new LUNA rate for the nuclear reaction 22^{22}Ne(p,γ)23(p,\gamma)^{23}Na on the chemical ejecta of intermediate-mass stars, with particular focus on the thermally-pulsing asymptotic giant branch (TP-AGB) stars that experience hot-bottom burning. To this aim we use the PARSEC and COLIBRI codes to compute the complete evolution, from the pre-main sequence up to the termination of the TP-AGB phase, of a set of stellar models with initial masses in the range 3.0M6.0M3.0\,M_{\odot} - 6.0\,M_{\odot}, and metallicities Zi=0.0005Z_{\rm i}=0.0005, Zi=0.006Z_{\rm i}=0.006, and Zi=0.014Z_{\rm i} = 0.014. We find that the new LUNA measures have much reduced the nuclear uncertainties of the 22^{22}Ne and 23^{23}Na AGB ejecta, which drop from factors of 10\simeq 10 to only a factor of few for the lowest metallicity models. Relying on the most recent estimations for the destruction rate of 23^{23}Na, the uncertainties that still affect the 22^{22}Ne and 23^{23}Na AGB ejecta are mainly dominated by evolutionary aspects (efficiency of mass-loss, third dredge-up, convection). Finally, we discuss how the LUNA results impact on the hypothesis that invokes massive AGB stars as the main agents of the observed O-Na anti-correlation in Galactic globular clusters. We derive quantitative indications on the efficiencies of key physical processes (mass loss, third dredge-up, sodium destruction) in order to simultaneously reproduce both the Na-rich, O-poor extreme of the anti-correlation, and the observational constraints on the CNO abundance. Results for the corresponding chemical ejecta are made publicly available

    First Direct Measurement of the ^{17}O(p,\gamma)^{18}F Reaction Cross-Section at Gamow Energies for Classical Novae

    Full text link
    Classical novae are important contributors to the abundances of key isotopes, such as the radioactive ^{18}F, whose observation by satellite missions could provide constraints on nucleosynthesis models in novae. The ^{17}O(p,\gamma)^{18}F reaction plays a critical role in the synthesis of both oxygen and fluorine isotopes but its reaction rate is not well determined because of the lack of experimental data at energies relevant to novae explosions. In this study, the reaction cross section has been measured directly for the first time in a wide energy range Ecm = 200 - 370 keV appropriate to hydrogen burning in classical novae. In addition, the E=183 keV resonance strength, \omega \gamma=1.67\pm0.12 \mueV, has been measured with the highest precision to date. The uncertainty on the ^{17}O(p,\gamma)^{18}F reaction rate has been reduced by a factor of 4, thus leading to firmer constraints on accurate models of novae nucleosynthesis.Comment: accepted by Phys. Rev. Let

    Preparation and characterisation of isotopically enriched Ta2_2O5_5 targets for nuclear astrophysics studies

    Full text link
    The direct measurement of reaction cross sections at astrophysical energies often requires the use of solid targets of known thickness, isotopic composition, and stoichiometry that are able to withstand high beam currents for extended periods of time. Here, we report on the production and characterisation of isotopically enriched Ta2_2O5_5 targets for the study of proton-induced reactions at the Laboratory for Underground Nuclear Astrophysics facility of the Laboratori Nazionali del Gran Sasso. The targets were prepared by anodisation of tantalum backings in enriched water (up to 66% in 17^{17}O and up to 96% in 18^{18}O). Special care was devoted to minimising the presence of any contaminants that could induce unwanted background reactions with the beam in the energy region of astrophysical interest. Results from target characterisation measurements are reported, and the conclusions for proton capture measurements with these targets are drawn.Comment: accepted to EPJ

    Complete results for five years of GNO solar neutrino observations

    Get PDF
    We report the complete GNO solar neutrino results for the measuring periods GNO III, GNO II, and GNO I. The result for GNO III (last 15 solar runs) is [54.3 + 9.9 - 9.3 (stat.)+- 2.3 (syst.)] SNU (1 sigma) or [54.3 + 10.2 - 9.6 (incl. syst.)] SNU (1 sigma) with errors combined. The GNO experiment is now terminated after altogether 58 solar exposure runs that were performed between May 20, 1998 and April 9, 2003. The combined result for GNO (I+II+III) is [62.9 + 5.5 - 5.3 (stat.) +- 2.5 (syst.)] SNU (1 sigma) or [62.9 + 6.0 - 5.9] SNU (1 sigma) with errors combined in quadrature. Overall, gallium based solar observations at LNGS (first in GALLEX, later in GNO) lasted from May 14, 1991 through April 9, 2003. The joint result from 123 runs in GNO and GALLEX is [69.3 +- 5.5 (incl. syst.)] SNU (1 sigma). The distribution of the individual run results is consistent with the hypothesis of a neutrino flux that is constant in time. Implications from the data in particle- and astrophysics are reiterated.Comment: 22 pages incl. 9 Figures and 8 Tables. to appear in: Physics Letters B (accepted April 13, 2005) PACS: 26.65.+t ; 14.60.P

    Testing the effects of opacity and the chemical mixture on the excitation of pulsations in B stars of the Magellanic Clouds

    Full text link
    The B-type pulsators known as \beta Cephei and Slowly Pulsating B (SPB) stars present pulsations driven by the \kappa mechanism, which operates thanks to an opacity bump due to the iron group elements. In low-metallicity environments such as the Magellanic Clouds, \beta Cep and SPB pulsations are not expected. Nevertheless, recent observations show evidence for the presence of B-type pulsator candidates in both galaxies. We seek an explanation for the excitation of \beta Cep and SPB modes in those galaxies by examining basic input physics in stellar modelling: i) the specific metal mixture of B-type stars in the Magellanic Clouds; ii) the role of a potential underestimation of stellar opacities. We first derive the present-day chemical mixtures of B-type stars in the Magellanic Clouds. Then, we compute stellar models for that metal mixture and perform a non-adiabatic analysis of these models. In a second approach, we simulate parametric enhancements of stellar opacities due to different iron group elements. We then study their effects in models of B stars and their stability. We find that adopting a representative chemical mixture of B stars in the Small Magellanic Cloud cannot explain the presence of B-type pulsators there. An increase of the opacity in the region of the iron-group bump could drive B-type pulsations, but only if this increase occurs at the temperature corresponding to the maximum contribution of Ni to this opacity bump. We recommend an accurate computation of Ni opacity to understand B-type pulsators in the Small Magellanic Cloud, as well as the frequency domain observed in some Galactic hybrid \beta Cep-SPB stars.Comment: 16 pages, 12 figures. Accepted for publication in MNRA

    An actively vetoed Clover gamma-detector for nuclear astrophysics at LUNA

    Full text link
    An escape-suppressed, composite high-purity germanium detector of the Clover type has been installed at the Laboratory for Underground Nuclear Astrophysics (LUNA) facility, deep underground in the Gran Sasso Laboratory, Italy. The laboratory gamma-ray background of the Clover detector has been studied underground at LUNA and, for comparison, also in an overground laboratory. Spectra have been recorded both for the single segments and for the virtual detector formed by online addition of all four segments. The effect of the escape-suppression shield has been studied as well. Despite their generally higher intrinsic background, escape-suppressed detectors are found to be well suited for underground nuclear astrophysics studies. As an example for the advantage of using a composite detector deep underground, the weak ground state branching of the Ep = 223 keV resonance in the 24Mg(p,gamma)25Al reaction is determined with improved precision.Comment: 8 pages, 6 figures, 3 tables; as accepted by Eur. Phys. J.

    LUNA: a Laboratory for Underground Nuclear Astrophysics

    Full text link
    It is in the nature of astrophysics that many of the processes and objects one tries to understand are physically inaccessible. Thus, it is important that those aspects that can be studied in the laboratory be rather well understood. One such aspect are the nuclear fusion reactions, which are at the heart of nuclear astrophysics. They influence sensitively the nucleosynthesis of the elements in the earliest stages of the universe and in all the objects formed thereafter, and control the associated energy generation, neutrino luminosity, and evolution of stars. We review an experimental approach for the study of nuclear fusion reactions based on an underground accelerator laboratory, named LUNA.Comment: Invited Review; accepted for publication in Reports on Progress in Physics; 26 pages; 27 figure

    Recent Advances in Modeling Stellar Interiors

    Full text link
    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: 1) updates to input physics of stellar models; 2) progress in two and three-dimensional evolution and hydrodynamic models; 3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid gamma Dor/delta Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as eta Car and P Cyg, and the solar abundance problem.Comment: Proceedings for invited talk at conference High Energy Density Laboratory Astrophysics 2010, Caltech, March 2010, submitted for special issue of Astrophysics and Space Science; 7 pages; 5 figure

    A new study of the 22^{22}Ne(p,γ\gamma)23^{23}Na reaction deep underground: Feasibility, setup, and first observation of the 186 keV resonance

    Get PDF
    The 22^{22}Ne(p,γ\gamma)23^{23}Na reaction takes part in the neon-sodium cycle of hydrogen burning. This cycle is active in asymptotic giant branch stars as well as in novae and contributes to the nucleosythesis of neon and sodium isotopes. In order to reduce the uncertainties in the predicted nucleosynthesis yields, new experimental efforts to measure the 22^{22}Ne(p,γ\gamma)23^{23}Na cross section directly at the astrophysically relevant energies are needed. In the present work, a feasibility study for a 22^{22}Ne(p,γ\gamma)23^{23}Na experiment at the Laboratory for Underground Nuclear Astrophysics (LUNA) 400\,kV accelerator deep underground in the Gran Sasso laboratory, Italy, is reported. The ion beam induced γ\gamma-ray background has been studied. The feasibility study led to the first observation of the EpE_{\rm p} = 186\,keV resonance in a direct experiment. An experimental lower limit of 0.12\,×\times\,106^{-6}\,eV has been obtained for the resonance strength. Informed by the feasibility study, a dedicated experimental setup for the 22^{22}Ne(p,γ\gamma)23^{23}Na experiment has been developed. The new setup has been characterized by a study of the temperature and pressure profiles. The beam heating effect that reduces the effective neon gas density due to the heating by the incident proton beam has been studied using the resonance scan technique, and the size of this effect has been determined for a neon gas target.Comment: Minor errors corrected; final versio
    corecore