41 research outputs found

    VIBES: VIsual Binary Exoplanet survey with SPHERE Upper limits on wide S-planet and S-BD frequencies, triple system discovery, and astrometric confirmation of 20 stellar binaries and three triple systems

    Full text link
    Recent surveys indicate that planets in binary systems are more abundant than previously thought, which is in agreement with theoretical work on disc dynamics and planet formation in binaries. In order to measure the abundance and physical characteristics of wide-orbit giant exoplanets in binary systems, we have designed the 'VIsual Binary Exoplanet survey with Sphere' (VIBES) to search for planets in visual binaries. It uses the SPHERE instrument at VLT to search for planets in 23 visual binary and four visual triple systems with ages of <145 Myr and distances of <150 pc. We used the IRDIS dual-band imager on SPHERE to acquire high-contrast images of the sample targets. For each binary, the two components were observed at the same time with a coronagraph masking only the primary star. For the triple star, the tight components were treated as a single star for data reduction. This enabled us to effectively search for companions around 50 individual stars in binaries and four binaries in triples. We derived upper limits of <<13.7\% for the frequency of sub-stellar companions around primaries in visual binaries, <<26.5\% for the fraction of sub-stellar companions around secondaries in visual binaries, and an occurrence rate of <<9.0\% for giant planets and brown dwarfs around either component of visual binaries. We have combined our observations with literature measurements to astrometrically confirm, for the first time, that 20 binaries and two triple systems, which were previously known, are indeed physically bound. Finally, we discovered a third component of the binary HD~121336. The upper limits we derived are compatible with planet formation through the core accretion and the gravitational instability processes in binaries. These limits are also in line with limits found for single star and circumbinary planet search surveys.Comment: Accepted for publication in Astronomy & Astrophysics on 18.09.2020 21 pages, 11 figure

    Post conjunction detection of β\beta Pictoris b with VLT/SPHERE

    Get PDF
    With an orbital distance comparable to that of Saturn in the solar system, \bpic b is the closest (semi-major axis \simeq\,9\,au) exoplanet that has been imaged to orbit a star. Thus it offers unique opportunities for detailed studies of its orbital, physical, and atmospheric properties, and of disk-planet interactions. With the exception of the discovery observations in 2003 with NaCo at the Very Large Telescope (VLT), all following astrometric measurements relative to \bpic have been obtained in the southwestern part of the orbit, which severely limits the determination of the planet's orbital parameters. We aimed at further constraining \bpic b orbital properties using more data, and, in particular, data taken in the northeastern part of the orbit. We used SPHERE at the VLT to precisely monitor the orbital motion of beta \bpic b since first light of the instrument in 2014. We were able to monitor the planet until November 2016, when its angular separation became too small (125 mas, i.e., 1.6\,au) and prevented further detection. We redetected \bpic b on the northeast side of the disk at a separation of 139\,mas and a PA of 30^{\circ} in September 2018. The planetary orbit is now well constrained. With a semi-major axis (sma) of a=9.0±0.5a = 9.0 \pm 0.5 au (1 σ\sigma ), it definitely excludes previously reported possible long orbital periods, and excludes \bpic b as the origin of photometric variations that took place in 1981. We also refine the eccentricity and inclination of the planet. From an instrumental point of view, these data demonstrate that it is possible to detect, if they exist, young massive Jupiters that orbit at less than 2 au from a star that is 20 pc away.Comment: accepted by A&

    Limits on the presence of planets in systems with debris discs: HD 92945 and HD 107146

    Get PDF
    Recent observations of resolved cold debris discs at tens of au have revealed that gaps could be a common feature in these Kuiper-belt analogues. Such gaps could be evidence for the presence of planets within the gaps or closer in near the edges of the disc. We present SPHERE observations of HD 92945 and HD 107146, two systems with detected gaps. We constrained the mass of possible companions responsible for the gap to 1-2 MJup for planets located inside the gap and to less than 5 MJup for separations down to 20 au from the host star. These limits allow us to exclude some of the possible configurations of the planetary systems proposed to explain the shape of the discs around these two stars. In order to put tighter limits on the mass at very short separations from the star, where direct-imaging data are less effective, we also combined our data with astrometric measurements from Hipparcos and Gaia and radial-velocity measurements. We were able to limit the separation and the mass of the companion potentially responsible for the proper-motion anomaly of HD 107146 to values of 2-7 au and 2-5 MJup, respectively. © 2021 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society

    The SPHERE infrared survey for exoplanets (SHINE). III. The demographics of young giant exoplanets below 300 au with SPHERE

    Get PDF
    The SHINE project is a 500-star survey performed with SPHERE on the VLT for the purpose of directly detecting new substellar companions and understanding their formation and early evolution. Here we present an initial statistical analysis for a subsample of 150 stars that are representative of the full SHINE sample. Our goal is to constrain the frequency of substellar companions with masses between 1 and 75 MJup and semimajor axes between 5 and 300 au. We adopt detection limits as a function of angular separation from the survey data for all stars converted into mass and projected orbital separation using the BEX-COND-hot evolutionary tracks and known distance to each system. Based on the results obtained for each star and on the 13 detections in the sample, we use a MCMC tool to compare our observations to two different types of models. The first is a parametric model based on observational constraints, and the second type are numerical models that combine advanced core accretion and gravitational instability planet population synthesis. Using the parametric model, we show that the frequencies of systems with at least one substellar companion are 23.09.7+13.5%23.0_{-9.7}^{+13.5}\%, 5.82.8+4.7%5.8_{-2.8}^{+4.7}\%, and 12.67.1+12.9%12.6_{-7.1}^{+12.9}\% for BA, FGK, and M stars, respectively. We also demonstrate that a planet-like formation pathway probably dominates the mass range from 1-75 MJup for companions around BA stars, while for M dwarfs, brown dwarf binaries dominate detections. In contrast, a combination of binary star-like and planet-like formation is required to best fit the observations for FGK stars. Using our population model and restricting our sample to FGK stars, we derive a frequency of 5.72.8+3.8%5.7_{-2.8}^{+3.8}\%, consistent with predictions from the parametric model. More generally, the frequency values that we derive are in excellent agreement with values obtained in previous studies.Comment: 24 pages, 14 figures, 3 tables. Accepted for publication in A&

    The SPHERE Infrared Survey for Exoplanets (SHINE): II. Observations, Data Reduction and Analysis, Detection Performances, and Initial Results

    Full text link
    Context. In recent decades, direct imaging has confirmed the existence of substellar companions (exoplanets or brown dwarfs) on wide orbits (>10 au) around their host stars. In striving to understand their formation and evolution mechanisms, in 2015 we initiated the SPHERE infrared survey for exoplanets (SHINE), a systematic direct imaging survey of young, nearby stars that is targeted at exploring their demographics. Aims. We aim to detect and characterize the population of giant planets and brown dwarfs beyond the snow line around young, nearby stars. Combined with the survey completeness, our observations offer the opportunity to constrain the statistical properties (occurrence, mass and orbital distributions, dependency on the stellar mass) of these young giant planets. Methods. In this study, we present the observing and data analysis strategy, the ranking process of the detected candidates, and the survey performances for a subsample of 150 stars that are representative of the full SHINE sample. Observations were conducted in a homogeneous way between February 2015 and February 2017 with the dedicated ground-based VLT/SPHERE instrument equipped with the IFS integral field spectrograph and the IRDIS dual-band imager, covering a spectral range between 0.9 and 2.3 μm. We used coronographic, angular, and spectral differential imaging techniques to achieve the best detection performances for this study, down to the planetary mass regime. Results. We processed, in a uniform manner, more than 300 SHINE observations and datasets to assess the survey typical sensitivity as a function of the host star and of the observing conditions. The median detection performance reached 5σ-contrasts of 13 mag at 200 mas and 14.2 mag at 800 mas with the IFS (YJ and YJH bands), and of 11.8 mag at 200 mas, 13.1 mag at 800 mas, and 15.8 mag at 3 as with IRDIS in H band, delivering one of the deepest sensitivity surveys thus far for young, nearby stars. A total of sixteen substellar companions were imaged in this first part of SHINE: seven brown dwarf companions and ten planetary-mass companions.These include two new discoveries, HIP 65426 b and HIP 64892 B, but not the planets around PDS70 that had not been originally selected for the SHINE core sample. A total of 1483 candidates were detected, mainly in the large field of view that characterizes IRDIS. The color-magnitude diagrams, low-resolution spectrum (when available with IFS), and follow-up observations enabled us to identify the nature (background contaminant or comoving companion) of about 86% of our subsample. The remaining cases are often connected to crowded-field follow-up observations that were missing. Finally, even though SHINE was not initially designed for disk searches, we imaged twelve circumstellar disks, including three new detections around the HIP 73145, HIP 86598, and HD 106906 systems. Conclusions. Nowadays, direct imaging provides a unique opportunity to probe the outer part of exoplanetary systems beyond 10 au to explore planetary architectures, as highlighted by the discoveries of: one new exoplanet, one new brown dwarf companion, and three new debris disks during this early phase of SHINE. It also offers the opportunity to explore and revisit the physical and orbital properties of these young, giant planets and brown dwarf companions (relative position, photometry, and low-resolution spectrum in near-infrared, predicted masses, and contrast in order to search for additional companions). Finally, these results highlight the importance of finalizing the SHINE systematic observation of about 500 young, nearby stars for a full exploration of their outer part to explore the demographics of young giant planets beyond 10 au and to identify the most interesting systems for the next generation of high-contrast imagers on very large and extremely large telescopes. © M. Langlois et al. 2021.SPHERE is an instrument designed and built by a consortium consisting of IPAG (Grenoble, France), MPIA (Heidelberg, Germany), LAM (Marseille, France), LESIA (Paris, France), Laboratoire Lagrange (Nice, France), INAF – Osservatorio di Padova (Italy), Observatoire de Genève (Switzerland), ETH Zürich (Switzerland), NOVA (Netherlands), ONERA (France) and ASTRON (Netherlands) in collaboration with ESO. SPHERE was funded by ESO, with additional contributions from CNRS (France), MPIA (Germany), INAF (Italy), FINES (Switzerland) and NOVA (Netherlands). SPHERE also received funding from the European CommissionSixth and Seventh Framework Programmes as part of the Optical Infrared Coordination Network for Astronomy (OPTICON) under grant number RII3-Ct-2004-001566 for FP6 (2004-2008), grant number 226604 for FP7 (2009-2012) and grant number 312430 for FP7 (2013-2016). This paper is based on observations collected at the European Southern Observatory under ESO programmes 198.C-0209, 097.C-0865, 095.C-0298, 095.C-0309,096.C-0241. This work has made use of the SPHERE Data Centre, jointly operated by OSUG/IPAG (Grenoble), PYTHEAS/LAM/CeSAM (Marseille), OCA/Lagrange (Nice), Observatoire de Paris/LESIA (Paris), and Observatoire de Lyon (OSUL/CRAL). This work is supported by the French National Research Agency in the framework of the Investissements d’Avenir program (ANR-15-IDEX-02), through the funding of the “Origin of Life” project of the Univ. Grenoble-Alpes. This work is jointly supported by the French National Programms (PNP and PNPS) and by the Action Spécifique Haute Résolution Angulaire (ASHRA) of CNRS/INSU co-funded by CNES. We also thank the anonymous referee for her/his careful reading of the manuscript as well as her/his insightful comments and suggestions. AV acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 757561). A.-M.L. acknowledges funding from French National Research Agency (GIPSE project). C.P. acknowledges financial support from Fondecyt (grant 3190691) and financial support from the ICM (Iniciativa Científica Milenio) via the Núcleo Milenio de Formación Planetaria grant, from the Universidad de Valparaíso. T.H. acknowledges support from the European Research Council under the Horizon 2020 Framework Program via the ERC Advanced Grant Origins 832428
    corecore