26 research outputs found

    Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water

    Get PDF
    In this work, we compare experimental data on myoglobin hydrated powders from elastic neutron scattering, broadband dielectric spectroscopy, and differential scanning calorimetry. Our aim is to obtain new insights on the connection between the protein dynamical transition, a fundamental phenomenon observed in proteins whose physical origin is highly debated, and the liquid-liquid phase transition (LLPT) possibly occurring in protein hydration water and related to the existence of a low temperature critical point in supercooled water. Our results provide a consistent thermodynamic/dynamic description which gives experimental support to the LLPT hypothesis and further reveals how fundamental properties of water and proteins are tightly related

    Hydration dependence of myoglobin dynamics studied with elastic neutron scattering, differential scanning calorimetry and broadband dielectric spectroscopy

    Get PDF
    In this work we present a thorough investigation of the hydration dependence of myoglobin dynamics. The study is performed on D2O-hydrated protein powders in the hydration range 0<h<0.5 (h≡gr[D2O]/gr[protein]) and in the temperature range 20-300K. The protein equilibrium fluctuations are investigated with Elastic Neutron Scattering using the spectrometer IN13 at ILL (Grenoble), while the relaxations of the protein + hydration water system are investigated with Broadband Dielectric Spectroscopy; finally, Differential Scanning Calorimetry is used to obtain a thermodynamic description of the system. The effect of increasing hydration is to speed up the relaxations of the myoglobin + hydration water system and, thermodynamically, to decrease the glass transition temperature; these effects tend to saturate at h values greater than ~0.3. Moreover, the calorimetric scans put in evidence the occurrence of an endothermic peak whose onset temperature is located at ~230K independent of hydration. From the point of view of the protein equilibrium fluctuations, while the amplitude of anharmonic mean square displacements is found to increase with hydration, their onset temperature (i.e. the onset temperature of the well known “protein dynamical transition”) is hydration independent. On the basis of the above results, the relevance of protein + hydration water relaxations and of the thermodynamic state of hydration water to the onset of the protein dynamical transition is discussed

    Application of Broadband Dielectric Spectroscopy to Cultural Heritage: characterization and preservation of ancient paper artwork

    Get PDF
    Within the cultural heritage the characterization and conservation of artworks based on paper represents a significant issue for both restorers and scientists. The paper deterioration is affected by the degree of hydrolytic and oxidative reactions which occur upon aging. Moreover, the durability of cellulose fibers depends on the intrinsic composition/structure of the paper as well as on the conservation conditions, such as temperature and humidity. The structural and dynamical characterization of the cellulose matrix and of the water confined within its pores is therefore of central interest. Our working hypothesis is that WATER DYNAMICS is one of the main determinants of paper degradation/conservation

    Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses

    Get PDF
    This is the post-print version of the final paper published in Journal of Hazardous Materials. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2011 Elsevier B.V.This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U–bacterial interaction experiments were performed at low pH values (2.0–4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase

    Effect of U(VI) aqueous speciation on the binding of uranium by the cell surface of Rhodotorula mucilaginosa, a natural yeast isolate from bentonites

    Get PDF
    This study presents the effect of aqueous uranium speciation (U-hydroxides and U-hydroxo-carbonates) on the interaction of this radionuclide with the cells of the yeast Rhodotorula mucigilanosa BII-R8. This strain was isolated from Spanish bentonites considered as reference materials for the engineered barrier components of the future deep geological repository of radioactive waste. X-ray absorption and infrared spectroscopy showed that the aqueous uranium speciation has no effect on the uranium binding process by this yeast strain. The cells bind mobile uranium species (U-hydroxides and U-hydroxo-carbonates) from solution via a time-dependent process initiated by the adsorption of uranium species to carboxyl groups. This leads to the subsequent involvement of organic phosphate groups forming uranium complexes with a local coordination similar to that of the uranyl mineral phase meta-autunite. Scanning transmission electron microscopy with high angle annular dark field analysis showed uranium accumulations at the cell surface associated with phosphorus containing ligands. Moreover, the effect of uranium mobile species on the cell viability and metabolic activity was examined by means of flow cytometry techniques, revealing that the cell metabolism is more affected by higher concentrations of uranium than the cell viability. The results obtained in this work provide new insights on the interaction of uranium with bentonite natural yeast from genus Rhodotorula under deep geological repository relevant conditions
    corecore