2,097 research outputs found

    Multifluid, Magnetohydrodynamic Shock Waves with Grain Dynamics II. Dust and the Critical Speed for C Shocks

    Full text link
    This is the second in a series of papers on the effects of dust on multifluid, MHD shock waves in weakly ionized molecular gas. We investigate the influence of dust on the critical shock speed, v_crit, above which C shocks cease to exist. Chernoff showed that v_crit cannot exceed the grain magnetosound speed, v_gms, if dust grains are dynamically well coupled to the magnetic field. We present numerical simulations of steady shocks where the grains may be well- or poorly coupled to the field. We use a time-dependent, multifluid MHD code that models the plasma as a system of interacting fluids: neutral particles, ions, electrons, and various ``dust fluids'' comprised of grains with different sizes and charges. Our simulations include grain inertia and grain charge fluctuations but to highlight the essential physics we assume adiabatic flow, single-size grains, and neglect the effects of chemistry. We show that the existence of a phase speed v_phi does not necessarily mean that C shocks will form for all shock speeds v_s less than v_phi. When the grains are weakly coupled to the field, steady, adiabatic shocks resemble shocks with no dust: the transition to J type flow occurs at v_crit = 2.76 v_nA, where v_nA is the neutral Alfven speed, and steady shocks with v_s > 2.76 v_nA are J shocks with magnetic precursors in the ion-electron fluid. When the grains are strongly coupled to the field, v_crit = min(2.76 v_nA, v_gms). Shocks with v_crit < v_s < v_gms have magnetic precursors in the ion-electron-dust fluid. Shocks with v_s > v_gms have no magnetic precursor in any fluid. We present time-dependent calculations to study the formation of steady multifluid shocks. The dynamics differ qualitatively depending on whether or not the grains and field are well coupled.Comment: 43 pages with 17 figures, aastex, accepted by The Astrophysical Journa

    The Spatial Distribution of Atomic Carbon Emission in the Giant Molecular Cloud NGC 604-2

    Full text link
    We have mapped a giant molecular cloud in the giant HII region NGC 604 in M33 in the 492 GHz ^3P_1 -- ^3P_0 transition of neutral atomic carbon using the James Clerk Maxwell Telescope. We find the distribution of the [CI] emission to be asymmetric with respect to the CO J=1--0 emission, with the peak of the [CI] emission offset towards the direction of the center of the HII region. In addition, the line ratio I_{[CI]}/I_{CO} is highest (~ 0.2) facing the HII region and lowest (< 0.1) away from it. These asymmetries indicate an edge-on morphology where the [CI] emission is strongest on the side of the cloud facing the center of the HII region, and not detected at all on the opposite side This suggests that the sources of the incident flux creating C from the dissociation of CO are the massive stars of the HII region. The lowest line ratios are similar to what is observed in Galactic molecular clouds, while the highest are similar to starburst galaxies and other regions of intense star formation. The column density ratio, N(C)/N(H_2) is a few times 10^{-6}, in general agreement with models of photodissociation regions.Comment: Accepted for publication in ApJ. 8 pages, 5 figures, 3 table

    On the hierarchical classification of G Protein-Coupled Receptors

    Get PDF
    Motivation: G protein-coupled receptors (GPCRs) play an important role in many physiological systems by transducing an extracellular signal into an intracellular response. Over 50% of all marketed drugs are targeted towards a GPCR. There is considerable interest in developing an algorithm that could effectively predict the function of a GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR sequences but in characterizing the interrelationships between known GPCRs. Results: An alignment-free approach to GPCR classification has been developed using techniques drawn from data mining and proteochemometrics. A dataset of over 8000 sequences was constructed to train the algorithm. This represents one of the largest GPCR datasets currently available. A predictive algorithm was developed based upon the simplest reasonable numerical representation of the protein's physicochemical properties. A selective top-down approach was developed, which used a hierarchical classifier to assign sequences to subdivisions within the GPCR hierarchy. The predictive performance of the algorithm was assessed against several standard data mining classifiers and further validated against Support Vector Machine-based GPCR prediction servers. The selective top-down approach achieves significantly higher accuracy than standard data mining methods in almost all cases

    The Ratio of Ortho- to Para-H2 in Photodissociation Regions

    Get PDF
    We discuss the ratio of ortho- to para-H2 in photodissociation regions (PDRs). We draw attention to an apparent confusion in the literature between the ortho-to-para ratio of molecules in FUV-pumped vibrationally excited states, and the H2 ortho-to-para abundance ratio. These ratios are not the same because the process of FUV-pumping of fluorescent H2 emission in PDRs occurs via optically thick absorption lines. Thus, gas with an equilibrium ratio of ortho- to para-H2 equal to 3 will yield FUV-pumped vibrationally excited ortho-to-para ratios smaller than 3, because the ortho-H2 pumping rates are preferentially reduced by optical depth effects. Indeed, if the ortho and para pumping lines are on the ``square root'' part of the curve-of-growth, then the expected ratio of ortho and para vibrational line strengths is the square root of 3, ~ 1.7, close to the typically observed value. Thus, contrary to what has sometimes been stated in the literature, most previous measurements of the ratio of ortho- to para-H2 in vibrationally excited states are entirely consistent with a total ortho-to-para ratio of 3, the equilibrium value for temperatures greater than 200 K. We present an analysis and several detailed models which illustrate the relationship between the total ratios of ortho- to para-H2 and the vibrationally excited ortho-to-para ratios in PDRs. Recent Infrared Space Observatory (ISO) measurements of pure rotational and vibrational H2 emissions from the PDR in the star-forming region S140 provide strong observational support for our conclusions.Comment: 23 pages (including 5 figures), LaTeX, uses aaspp4.sty, accepted for publication in Ap

    The Structure, Kinematics and Physical Properties of the Molecular Gas in the Starburst Nucleus of NGC 253

    Full text link
    We present 5.2" x 2.6" resolution interferometry of CO J=1-0 emission from the starburst galaxy NGC 253. The high spatial resolution of these new data, in combination with recent high resolution maps of 13CO, HCN and near-infrared emission, allow us for the first time to link unambiguously the gas properties in the central starburst of NGC 253 with its bar dynamics. We confirm that the star formation results from bar-driven gas flows as seen in "twin peaks" galaxies. Two distinct kinematic features are evident from the CO map and position-velocity diagram: a group of clouds rotating as a solid body about the kinematic center of the galaxy, and a more extended gas component associated with the near-infrared bar. We model the line intensities of CO, HCN and 13CO to infer the physical conditions of the gas in the nucleus of NGC 253. The results indicate increased volume densities around the radio nucleus in a twin-peaks morphology. Compared with the CO kinematics, the gas densities appear highest near the radius of a likely inner Linblad resonance, and slightly lead the bar minor axis. This result is similar to observations of the face-on, twin-peaks galaxy NGC 6951, and is consistent with models of starburst generation due to gas inflow along a bar.Comment: To appear in the ApJ, 28 pages, 12 figure file

    Rice-based Cropping Systems - ICRISAT's Experience

    Get PDF
    Rice is the most important staple food crop in Asia, where about 90% of the world's rice production is located. Rice covers 81 m ha in South and Southeast Asia, where approximately 30% of the cropped land is irrigated and double-cropped throughout the year. With the increase in population and a continuous decline in the average farm size (0.5-2.0 ha), there is a growing need to put the existing land base to better use. The prevailing practice of monocropping rice and then leaving the fields fallow after the harvest, could prove disastrous because of its inability to meet the increasing demand for rice and grain legumes

    Complex Langevin Equation and the Many-Fermion Problem

    Get PDF
    We study the utility of a complex Langevin (CL) equation as an alternative for the Monte Carlo (MC) procedure in the evaluation of expectation values occurring in fermionic many-body problems. We find that a CL approach is natural in cases where non-positive definite probability measures occur, and remains accurate even when the corresponding MC calculation develops a severe ``sign problem''. While the convergence of CL averages cannot be guaranteed in principle, we show how convergent results can be obtained in three examples ranging from simple one-dimensional integrals over quantum mechanical models to a schematic shell model path integral.Comment: 19 pages, 10 PS figures embedded in tex

    A pair of planets around HD 202206 or a circumbinary planet?

    Full text link
    Long-term precise Doppler measurements with the CORALIE spectrograph reveal the presence of a second planet orbiting the solar-type star HD202206. The radial-velocity combined fit yields companion masses of m_2\sini = 17.4 M_Jup and 2.44 M_Jup, semi-major axes of a = 0.83 AU and 2.55 AU, and eccentricities of e = 0.43 and 0.27, respectively. A dynamical analysis of the system further shows a 5/1 mean motion resonance between the two planets. This system is of particular interest since the inner planet is within the brown-dwarf limits while the outer one is much less massive. Therefore, either the inner planet formed simultaneously in the protoplanetary disk as a superplanet, or the outer Jupiter-like planet formed in a circumbinary disk. We believe this singular planetary system will provide important constraints on planetary formation and migration scenarios.Comment: 9 pages, 14 figures, accepted in A&A, 12-May-200

    HST STIS Ultraviolet Spectral Evidence for Outflow in Extreme Narrow-line Seyfert 1 Galaxies: I. Data and Analysis

    Full text link
    We present HST STIS observations of two extreme NLS1s, IRAS 13224-3809 and 1H 0707-495. The spectra are characterized by very blue continua, broad, strongly blueshifted high-ionization lines (including \ion{C}{4} and \ion{N}{5}), and narrow, symmetric intermediate- (including \ion{C}{3}], \ion{Si}{3}], \ion{Al}{3}) and low-ionization (e.g., \ion{Mg}{2}) lines centered at their rest wavelengths. The emission-line profiles suggest that the high-ionization lines are produced in a wind, and the intermediate- and low-ionization lines are produced in low-velocity gas associated with the accretion disk or base of the wind. In this paper, we present the analysis of the spectra from these two objects; in a companion paper we present photoionization analysis and a toy dynamical model for the wind. The highly asymmetric profile of \ion{C}{4} suggests that it is dominated by emission from the wind, so we develop a template for the wind from the \ion{C}{4} line. We model the bright emission lines in the spectra using a combination of this template, and a narrow, symmetric line centered at the rest wavelength. We also analyzed a comparison sample of HST spectra from 14 additional NLS1s, and construct a correlation matrix of emission line and continuum properties. A number of strong correlations were observed, including several involving the asymmetry of the \ion{C}{4} line.Comment: 26 pages, 10 figures, accepted for publication in ApJ with no change

    Warm Molecular Gas Traced with CO J=7->6 in the Galaxy's Central 2 Parsecs: Dynamical Heating of the Circumnuclear Disk

    Full text link
    We present an 11 arcsec resolution map of the central two parsecs of the Galaxy in the CO J =7->6 rotational transition. The CO emission shows rotation about Sgr A*, but also evidence for non-circular turbulent motion and a clumpy morphology. We combine our dataset with available CO measurements to model the physical conditions in the disk. We find that the molecular gas in the region is both warm and dense, with T~200-300 K, n_H2~50,000-70,000 cm^-3. The mass of warm molecular gas we measure in the central two parsecs is at least 2000 M_solar, about 20 times the UV-excited atomic gas mass, ruling out an UV heating scenario for the molecular material. We compare the available spectral tracers with theoretical models and conclude that molecular gas is heated with magneto-hydrodynamic shocks with v~10-20 kms and B~0.3-0.5 mG. Using the conditions derived with the CO analysis, we include the other important coolants--neutral oxygen and molecular hydrogen--to estimate the total cooling budget of the molecular material. We derive a mass to luminosity ratio of 2-3 M_solar/ L_solar, which is consistent with the total power dissipated via turbulent decay in 0.1 pc cells with v_rms~15 kms. These size and velocity scales are comparable to the observed clumping scale and the velocity dispersion. At this rate, the material near Sgr A* its dissipating its orbital energy on an orbital timescale, and cannot last for more than a few orbits. Our conclusions support a scenario in which the features near Sgr A* such as the CND and northern arm are generated by infalling clouds with low specific angular momentum.Comment: 31 pages, including 5 figures, accepted for publication in Ap
    • …
    corecore