1,076 research outputs found

    Einsatz der Nahinfrarotspektroskopie zur Qualitätskontrolle ökologischer Produkte am Beispiel von Möhren

    Get PDF
    Near-infrared reflectance spectroscopy is known for its inexpensiveness, rapidity and accuracy and may become a useful tool for the quality assessment of products of the growing organic food market. The objective of this study was to evaluate the ability of visible and near-infrared reflectance spectroscopy (NIRS) to predict several quality parameters (total nitrogen content and the content of different sugars) of organically grown carrots. Spectra of the VIS-NIR region (400-2500 nm) from 120 dried and milled carrot samples were recorded and transformed in the form of (log[1/reflectance]) values. The samples were randomly separated into two groups for calibration (n=60) and validation (n=60). A modified partial least square method was used to develop an equation over the whole spectrum (1st to 3rd derivation) from the spectra and the laboratory results for total nitrogen and the contents of D-glucose, D-fructose, sucrose and the sum of these three sugars. Calibrations were successful for all constituents. The validation, however, gave differing results: The total nitrogen content was predicted well by NIRS - the regression coefficient (a) of the linear regression (measured against predicted values) was 1.0, the correlation coefficient (r) was 0.9 and the ratio of standard deviation of the laboratory results to standard error of prediction (RDP) was 2.5. A satisfactory prediction was obtained for D-glucose (a=0.8, r=0.8, RDP=1.5) and D-fructose (a=0.8, r=0.8, RDP=1.5). In contrast, the contents of sucrose (a=0.8, r=0.7, RPD=1.4) and the sum of sugars (a=1.2, r=0.6, RPD=1.3) were predicted less satisfactorily. The good and satisfactory results for total nitrogen, glucose and fructose indicate that there is marked potential of NIRS for the quality assessment of organic food products. Studies are now required for a wider spectrum of food products and more constituents

    Solar science with the Atacama Large Millimeter/submillimeter Array - A new view of our Sun

    Get PDF
    The Atacama Large Millimeter/submillimeter Array (ALMA) is a new powerful tool for observing the Sun at high spatial, temporal, and spectral resolution. These capabilities can address a broad range of fundamental scientific questions in solar physics. The radiation observed by ALMA originates mostly from the chromosphere - a complex and dynamic region between the photosphere and corona, which plays a crucial role in the transport of energy and matter and, ultimately, the heating of the outer layers of the solar atmosphere. Based on first solar test observations, strategies for regular solar campaigns are currently being developed. State-of-the-art numerical simulations of the solar atmosphere and modeling of instrumental effects can help constrain and optimize future observing modes for ALMA. Here we present a short technical description of ALMA and an overview of past efforts and future possibilities for solar observations at submillimeter and millimeter wavelengths. In addition, selected numerical simulations and observations at other wavelengths demonstrate ALMA's scientific potential for studying the Sun for a large range of science cases.Comment: 73 pages, 21 figures ; Space Science Reviews (accepted December 10th, 2015); accepted versio

    Lithium abundances of halo dwarfs based on excitation temperatures. II : Non-local thermodynamic equilibrium

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO)Context. The plateau in the abundance of 7Li in metal-poor stars was initially interpreted as an observational indicator of the primordial lithium abundance. However, this observational value is in disagreement with that deduced from calculations of Big Bang nucleosynthesis (BBN), when using the Wilkinson microwave anisotropy probe (WMAP) baryon density measurements. One of the most important factors in determining the stellar lithium abundance is the effective temperature. In a previous study by the authors, new effective temperatures (Teff) for sixteen metal-poor halo dwarfs were derived using a local thermodynamic equilibrium (LTE) description of the formation of Fe lines. This new Teff scale reinforced the discrepancy. Aims. For six of the stars from our previous study we calculate revised temperatures using a non-local thermodynamic equilibrium (NLTE) approach. These are then used to derive a new mean primordial lithium abundance in an attempt to solve the lithium discrepancy. Methods. Using the code MULTI we calculate NLTE corrections to the LTE abundances for the Fe i lines measured in the six stars, and determine new Teff's. We keep other physical parameters, i.e. log g, [Fe/H] and ξ, constant at the values calculated in Paper I. With the revised Teff scale we derive new Li abundances. We compare the NLTE values of Teff with the photometric temperatures of Ryan et al. (1999, ApJ, 523, 654), the infrared flux method (IRFM) temperatures of Meléndez & Ramírez (2004, ApJ, 615, L33), and the Balmer line wing temperatures of Asplund et al. (2006, ApJ, 644, 229). Results. We find that our temperatures are hotter than both the Ryan et al. and Asplund et al. temperatures by typically ~110–160 K, but are still cooler than the temperatures of Meléndez & Ramírez by typically ~190 K. The temperatures imply a primordial Li abundance of 2.19 dex or 2.21 dex, depending on the magnitude of collisions with hydrogen in the calculations, still well below the value of 2.72 dex inferred from WMAP + BBN. We discuss the effects of collisions on trends of7Li abundances with [Fe/H] and Teff, as well as the NLTE effects on the determination of log g through ionization equilibrium, which imply a collisional scaling factor SH > 1 for collisions between Fe and H atoms. [please see original online abstract for correct notation]Peer reviewe

    Measurement of the running of the QED coupling in small-angle Bhabha scattering at LEP

    Full text link
    Using the OPAL detector at LEP, the running of the effective QED coupling alpha(t) is measured for space-like momentum transfer from the angular distribution of small-angle Bhabha scattering. In an almost ideal QED framework, with very favourable experimental conditions, we obtain: Delta alpha(-6.07GeV^2) - Delta alpha(-1.81GeV^2) = (440 pm 58 pm 43 pm 30) X 10^-5, where the first error is statistical, the second is the experimental systematic and the third is the theoretical uncertainty. This agrees with current evaluations of alpha(t).The null hypothesis that alpha remains constant within the above interval of -t is excluded with a significance above 5sigma. Similarly, our results are inconsistent at the level of 3sigma with the hypothesis that only leptonic loops contribute to the running. This is currently the most significant direct measurment where the running alpha(t) is probed differentially within the measured t range.Comment: 43 pages, 12 figures, Submitted to Euro. Phys. J.

    Determination of alpha_s using Jet Rates at LEP with the OPAL detector

    Full text link
    Hadronic events produced in e+e- collisions by the LEP collider and recorded by the OPAL detector were used to form distributions based on the number of reconstructed jets. The data were collected between 1995 and 2000 and correspond to energies of 91 GeV, 130-136 GeV and 161-209 GeV. The jet rates were determined using four different jet-finding algorithms (Cone, JADE, Durham and Cambridge). The differential two-jet rate and the average jet rate with the Durham and Cambridge algorithms were used to measure alpha(s) in the LEP energy range by fitting an expression in which order alpah_2s calculations were matched to a NLLA prediction and fitted to the data. Combining the measurements at different centre-of-mass energies, the value of alpha_s (Mz) was determined to be alpha(s)(Mz)=0.1177+-0.0006(stat.)+-0.0012$(expt.)+-0.0010(had.)+-0.0032(theo.) \.Comment: 40 pages, 17 figures, Submitted to Euro. Phys. J.

    Colour reconnection in e+e- -> W+W- at sqrt(s) = 189 - 209 GeV

    Full text link
    The effects of the final state interaction phenomenon known as colour reconnection are investigated at centre-of-mass energies in the range sqrt(s) ~ 189-209 GeV using the OPAL detector at LEP. Colour reconnection is expected to affect observables based on charged particles in hadronic decays of W+W-. Measurements of inclusive charged particle multiplicities, and of their angular distribution with respect to the four jet axes of the events, are used to test models of colour reconnection. The data are found to exclude extreme scenarios of the Sjostrand-Khoze Type I (SK-I) model and are compatible with other models, both with and without colour reconnection effects. In the context of the SK-I model, the best agreement with data is obtained for a reconnection probability of 37%. Assuming no colour reconnection, the charged particle multiplicity in hadronically decaying W bosons is measured to be (nqqch) = 19.38+-0.05(stat.)+-0.08 (syst.).Comment: 30 pages, 9 figures, Submitted to Euro. Phys. J.

    Measurement of the partial widths of the Z into up- and down-type quarks

    Full text link
    Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma decays were selected by tagging hadronic final states with isolated photon candidates in the electromagnetic calorimeter. Combining the measured rates of Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the simultaneous determination of the widths of the Z into up- and down-type quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18} MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.

    Scaling violations of quark and gluon jet fragmentation functions in e+e- annihilations at sqrt(s) = 91.2 and 183-209 GeV

    Full text link
    Flavour inclusive, udsc and b fragmentation functions in unbiased jets, and flavour inclusive, udsc, b and gluon fragmentation functions in biased jets are measured in e+e- annihilations from data collected at centre-of-mass energies of 91.2, and 183-209 GeV with the OPAL detector at LEP. The unbiased jets are defined by hemispheres of inclusive hadronic events, while the biased jet measurements are based on three-jet events selected with jet algorithms. Several methods are employed to extract the fragmentation functions over a wide range of scales. Possible biases are studied in the results are obtained. The fragmentation functions are compared to results from lower energy e+e- experiments and with earlier LEP measurements and are found to be consistent. Scaling violations are observed and are found to be stronger for the fragmentation functions of gluon jets than for those of quarks. The measured fragmentation functions are compared to three recent theoretical next-to-leading order calculations and to the predictions of three Monte Carlo event generators. While the Monte Carlo models are in good agreement with the data, the theoretical predictions fail to describe the full set of results, in particular the b and gluon jet measurements.Comment: 46 pages, 17 figures, Submitted to Eur. Phys J.

    Measurement of the Strong Coupling alpha s from Four-Jet Observables in e+e- Annihilation

    Full text link
    Data from e+e- annihilation into hadrons at centre-of-mass energies between 91 GeV and 209 GeV collected with the OPAL detector at LEP, are used to study the four-jet rate as a function of the Durham algorithm resolution parameter ycut. The four-jet rate is compared to next-to-leading order calculations that include the resummation of large logarithms. The strong coupling measured from the four-jet rate is alphas(Mz0)= 0.1182+-0.0003(stat.)+-0.0015(exp.)+-0.0011(had.)+-0.0012(scale)+-0.0013(mass) in agreement with the world average. Next-to-leading order fits to the D-parameter and thrust minor event-shape observables are also performed for the first time. We find consistent results, but with significantly larger theoretical uncertainties.Comment: 25 pages, 15 figures, Submitted to Euro. Phys. J.

    Measurement of Rb in e+e- Collisions at 182 - 209 GeV

    Full text link
    Measurements of Rb, the ratio of the bbbar cross-section to the qqbar cross- section in e+e- collisions, are presented. The data were collected by the OPAL experiment at LEP at centre-of-mass energies between 182 GeV and 209 GeV. Lepton, lifetime and event shape information is used to tag events containing b quarks with high efficiency. The data are compatible with the Standard Model expectation. The mean ratio of the eight measurements reported here to the Standard Model prediction is 1.055+-0.031+-0.037, where the first error is statistical and the second systematic.Comment: 21 pages, 5 figures, Submitted to Phys. Letts
    • …
    corecore