120 research outputs found

    Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed

    Get PDF
    The motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages. Part 1 places the motor theory of speech perception in a larger framework based on our earlier models of the adaptive formation of mirror neurons for grasping, and for viewing extensions of that mirror system as part of a larger system for neuro-linguistic processing, augmented by the present consideration of recognizing speech in a novel accent. Part 2 then offers a novel computational model of how a listener comes to understand the speech of someone speaking the listener's native language with a foreign accent. The core tenet of the model is that the listener uses hypotheses about the word the speaker is currently uttering to update probabilities linking the sound produced by the speaker to phonemes in the native language repertoire of the listener. This, on average, improves the recognition of later words. This model is neutral regarding the nature of the representations it uses (motor vs. auditory). It serve as a reference point for the discussion in Part 3, which proposes a dual-stream neuro-linguistic architecture to revisits claims for and against the motor theory of speech perception and the relevance of mirror neurons, and extracts some implications for the reframing of the motor theory

    Chimpanzee APOBEC3 proteins deter SIVs from any monkey business

    Get PDF
    Cross-species transmissions of viruses from animals to humans are at the origin of major human pathogenic viruses. While the role of ecological and epidemiological factors in the emergence of new pathogens is well documented, the importance of host factors is often unknown. Chimpanzees are the closest relatives of humans and the animal reservoir at the origin of the human AIDS pandemic. However, despite being regularly exposed to monkey lentiviruses through hunting, chimpanzees are naturally infected by only a single simian immunodeficiency virus, SIVcpz. Here, we asked why chimpanzees appear to be protected against the successful emergence of other SIVs. In particular, we investigated the role of the chimpanzee APOBEC3 genes in providing a barrier to infection by most monkey lentiviruses. We found that most SIV Vifs, including Vif from SIVwrc infecting western-red colobus, the chimpanzee's main monkey prey in West Africa, could not antagonize chimpanzee APOBEC3G. Moreover, chimpanzee APOBEC3D, as well as APOBEC3F and APOBEC3H, provided additional protection against SIV Vif antagonism. Consequently, lentiviral replication in primary chimpanzee CD4(+) T cells was dependent on the presence of a lentiviral vif gene that could antagonize chimpanzee APOBEC3s. Finally, by identifying and functionally characterizing several APOBEC3 gene polymorphisms in both common chimpanzees and bonobos, we found that these ape populations encode APOBEC3 proteins that are uniformly resistant to antagonism by monkey lentiviruses

    New Insights in the Contribution of Voltage-Gated Nav Channels to Rat Aorta Contraction

    Get PDF
    BACKGROUND: Despite increasing evidence for the presence of voltage-gated Na(+) channels (Na(v)) isoforms and measurements of Na(v) channel currents with the patch-clamp technique in arterial myocytes, no information is available to date as to whether or not Na(v) channels play a functional role in arteries. The aim of the present work was to look for a physiological role of Na(v) channels in the control of rat aortic contraction. METHODOLOGY/PRINCIPAL FINDINGS: Na(v) channels were detected in the aortic media by Western blot analysis and double immunofluorescence labeling for Na(v) channels and smooth muscle alpha-actin using specific antibodies. In parallel, using real time RT-PCR, we identified three Na(v) transcripts: Na(v)1.2, Na(v)1.3, and Na(v)1.5. Only the Na(v)1.2 isoform was found in the intact media and in freshly isolated myocytes excluding contamination by other cell types. Using the specific Na(v) channel agonist veratridine and antagonist tetrodotoxin (TTX), we unmasked a contribution of these channels in the response to the depolarizing agent KCl on rat aortic isometric tension recorded from endothelium-denuded aortic rings. Experimental conditions excluded a contribution of Na(v) channels from the perivascular sympathetic nerve terminals. Addition of low concentrations of KCl (2-10 mM), which induced moderate membrane depolarization (e.g., from -55.9+/-1.4 mV to -45.9+/-1.2 mV at 10 mmol/L as measured with microelectrodes), triggered a contraction potentiated by veratridine (100 microM) and blocked by TTX (1 microM). KB-R7943, an inhibitor of the reverse mode of the Na(+)/Ca(2+) exchanger, mimicked the effect of TTX and had no additive effect in presence of TTX. CONCLUSIONS/SIGNIFICANCE: These results define a new role for Na(v) channels in arterial physiology, and suggest that the TTX-sensitive Na(v)1.2 isoform, together with the Na(+)/Ca(2+) exchanger, contributes to the contractile response of aortic myocytes at physiological range of membrane depolarization

    Tensile Properties of the Murine Ventral Vertical Midline Incision

    Get PDF
    In clinical surgery, the vertical midline abdominal incision is popular but associated with healing failures. A murine model of the ventral vertical midline incision was developed in order to study the healing of this incision type.The strength of the wild type murine ventral abdominal wall in the midline was contained within the dermis; the linea alba made a negligible contribution. Unwounded abdominal wall had a downward trend (nonsignificant) in maximal tension between 12 and 29 weeks of age. The incision attained 50% of its final strength by postoperative day 40. The maximal tension of the ventral vertical midline incision was nearly that of unwounded abdominal wall by postwounding day 60; there was no difference in unwounded vs. wounded maximal tension at postwounding day 120.After 120 days of healing, the ventral vertical midline incision in the wild type mouse was not significantly different from age-matched nonwounded controls. About half of the final incisional strength was attained after 6 weeks of healing. The significance of this work was to establish the kinetics of wild type incisional healing in a model for which numerous genotypes and genetic tools would be available for subsequent study

    Food Supply and Seawater pCO2 Impact Calcification and Internal Shell Dissolution in the Blue Mussel Mytilus edulis

    Get PDF
    Progressive ocean acidification due to anthropogenic CO2 emissions will alter marine ecosytem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to acidification. In the case of the blue mussel Mytilus edulis, high body fluid pCO2 causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO2 impacts calcification and inner shell surface integrity we exposed Baltic M. edulis to four different seawater pCO2 (39, 142, 240, 405 Pa) and two food algae (310–350 cells mL−1 vs. 1600–2000 cells mL−1) concentrations for a period of seven weeks during winter (5°C). We found that low food algae concentrations and high pCO2 values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous ( = aragonite) layers was documented via stereomicroscopy and SEM at the two highest pCO2 treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO2, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals' energy budget under conditions of CO2 stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance) instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces

    Two approaches to the study of the origin of life.

    Get PDF
    This paper compares two approaches that attempt to explain the origin of life, or biogenesis. The more established approach is one based on chemical principles, whereas a new, yet not widely known approach begins from a physical perspective. According to the first approach, life would have begun with - often organic - compounds. After having developed to a certain level of complexity and mutual dependence within a non-compartmentalised organic soup, they would have assembled into a functioning cell. In contrast, the second, physical type of approach has life developing within tiny compartments from the beginning. It emphasises the importance of redox reactions between inorganic elements and compounds found on two sides of a compartmental boundary. Without this boundary, ¿life¿ would not have begun, nor have been maintained; this boundary - and the complex cell membrane that evolved from it - forms the essence of life

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    CD4 receptor diversity in chimpanzees protects against SIV infection

    Get PDF
    Human and simian immunodeficiency viruses (HIV/SIV) use CD4 as the primary receptor to enter target cells. Here, we show that the chimpanzee CD4 is highly polymorphic, with nine coding variants present in wild populations, and that this diversity interferes with SIV envelope (Env)-CD4 interactions. Testing the replication fitness of SIVcpz strains in CD4+ T cells from captive chimpanzees, we found that certain viruses were unable to infect cells from certain hosts. These differences were recapitulated in CD4 transfection assays, which revealed a strong association between CD4 genotypes and SIVcpz infection phenotypes. The most striking differences were observed for three substitutions (Q25R, Q40R, P68T), with P68T generating a second N-linked glycosylation site (N66) in addition to an invariant N32 encoded by all chimpanzee CD4 alleles. In-silico modeling and site-directed mutagenesis identified charged residues at the CD4-Env interface and clashes between CD4- and Env-encoded glycans as mechanisms of inhibition. CD4 polymorphisms also reduced Env-mediated cell entry of monkey SIVs, which was dependent on at least one D1 domain glycan. CD4 allele frequencies varied among wild chimpanzees, with high diversity in all but the western subspecies, which appeared to have undergone a selective sweep. One allele was associated with lower SIVcpz prevalence rates in the wild. These results indicate that substitutions in the D1 domain of the chimpanzee CD4 can prevent SIV cell entry. Although some SIVcpz strains have adapted to utilize these variants, CD4 diversity is maintained to protect chimpanzees against infection with SIVcpz and other SIVs to which they are exposed
    • …
    corecore