281 research outputs found
Recent Progress in the Use of Glucagon and Glucagon Receptor Antagonists in the Treatment of Diabetes Mellitus
Glucagon is an important pancreatic hormone, released into blood circulation by alpha cells of the islet of Langerhans. Glucagon induces gluconeogenesis and glycogenolysis in hepatocytes, leading to an increase in hepatic glucose production and subsequently hyperglycemia in susceptible individuals. Hyperglucagonemia is a constant feature in patients with T2DM. A number of bioactive agents that can block glucagon receptor have been identified. These glucagon receptor antagonists can reduce the hyperglycemia associated with exogenous glucagon administration in normal as well as diabetic subjects. Glucagon receptor antagonists include isoserine and beta-alanine derivatives, bicyclic 19-residue peptide BI-32169, Des-His1-[Glu9] glucagon amide and related compounds, 5-hydroxyalkyl-4-phenylpyridines, N-[3-cano-6- (1,1 dimethylpropyl)-4,5,6,7-tetrahydro-1-benzothien-2-yl]-2-ethylbutamide, Skyrin and NNC 250926. The absorption, dosage, catabolism, excretion and medicinal chemistry of these agents are the subject of this review. It emphasizes the role of glucagon in glucose homeostasis and how it could be applied as a novel tool for the management of diabetes mellitus by blocking its receptors with either monoclonal antibodies, peptide and non-peptide antagonists or gene knockout techniques
New Insight into the Antifibrotic Effects of Praziquantel on Mice in Infection with Schistosoma japonicum
Schistosomiasis is a parasitic disease infecting more than 200 million people in the world. Although chemotherapy targeting on killing schistosomes is one of the main strategies in the disease control, there are few effective ways of dealing with liver fibrosis caused by the parasite infection in the chronic and advanced stages of schistosomiasis. For this reason, new strategies and prospective drugs, which exert antifibrotic effects, are urgently required.-induced liver fibrosis was inhibited by PZQ treatment for 30 days. Furthermore, we analyzed the effects of praziquantel on mouse primary hepatic stellate cells (HSCs). It is indicated that mRNA expressions of Col1α1, Col3α1, α-SMA, TGF-β, MMP9 and TIMP1 of HSCs were all inhibited after praziquantel anti-parasite treatments.The significant amelioration of hepatic fibrosis by praziquantel treatment validates it as a promising drug of anti-fibrosis and offers potential of a new chemotherapy for hepatic fibrosis resulting from schistosomiasis
Genetic Structure, Linkage Disequilibrium and Signature of Selection in Sorghum: Lessons from Physically Anchored DArT Markers
Population structure, extent of linkage disequilibrium (LD) as well as signatures of selection were investigated in sorghum using a core sample representative of worldwide diversity. A total of 177 accessions were genotyped with 1122 informative physically anchored DArT markers. The properties of DArTs to describe sorghum genetic structure were compared to those of SSRs and of previously published RFLP markers. Model-based (STRUCTURE software) and Neighbor-Joining diversity analyses led to the identification of 6 groups and confirmed previous evolutionary hypotheses. Results were globally consistent between the different marker systems. However, DArTs appeared more robust in terms of data resolution and bayesian group assignment. Whole genome linkage disequilibrium as measured by mean r2 decreased from 0.18 (between 0 to 10 kb) to 0.03 (between 100 kb to 1 Mb), stabilizing at 0.03 after 1 Mb. Effects on LD estimations of sample size and genetic structure were tested using i. random sampling, ii. the Maximum Length SubTree algorithm (MLST), and iii. structure groups. Optimizing population composition by the MLST reduced the biases in small samples and seemed to be an efficient way of selecting samples to make the best use of LD as a genome mapping approach in structured populations. These results also suggested that more than 100,000 markers may be required to perform genome-wide association studies in collections covering worldwide sorghum diversity. Analysis of DArT markers differentiation between the identified genetic groups pointed out outlier loci potentially linked to genes controlling traits of interest, including disease resistance genes for which evidence of selection had already been reported. In addition, evidence of selection near a homologous locus of FAR1 concurred with sorghum phenotypic diversity for sensitivity to photoperiod
Recommended from our members
An integrated bioinformatics analysis reveals divergent evolutionary pattern of oil biosynthesis in high- and low-oil plants
Seed oils provide a renewable source of food, biofuel and industrial raw materials that is important for humans. Although many genes and pathways for acyl-lipid metabolism have been identified, little is known about whether there is a specific mechanism for high-oil content in high-oil plants. Based on the distinct differences in seed oil content between four high-oil dicots (20~50%) and three low-oil grasses (<3%), comparative genome, transcriptome and differential expression analyses were used to investigate this mechanism. Among 4,051 dicot-specific soybean genes identified from 252,443 genes in the seven species, 54 genes were shown to directly participate in acyl-lipid metabolism, and 93 genes were found to be associated with acyl-lipid metabolism. Among the 93 dicot-specific genes, 42 and 27 genes, including CBM20-like SBDs and GPT2, participate in carbohydrate degradation and transport, respectively. 40 genes highly up-regulated during seed oil rapid accumulation period are mainly involved in initial fatty acid synthesis, triacylglyceride assembly and oil-body formation, for example, ACCase, PP, DGAT1, PDAT1, OLEs and STEROs, which were also found to be differentially expressed between high- and low-oil soybean accessions. Phylogenetic analysis revealed distinct differences of oleosin in patterns of gene duplication and loss between high-oil dicots and low-oil grasses. In addition, seed-specific GmGRF5, ABI5 and GmTZF4 were predicted to be candidate regulators in seed oil accumulation. This study facilitates future research on lipid biosynthesis and potential genetic improvement of seed oil content
Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries:results of an internet-based global point prevalence survey
Summary: Background: The Global Point Prevalence Survey (Global-PPS) established an international network of hospitals to measure antimicrobial prescribing and resistance worldwide. We aimed to assess antimicrobial prescribing and resistance in hospital inpatients. Methods: We used a standardised surveillance method to collect detailed data about antimicrobial prescribing and resistance from hospitals worldwide, which were grouped by UN region. The internet-based survey included all inpatients (adults, children, and neonates) receiving an antimicrobial who were on the ward at 0800 h on one specific day between January and September, 2015. Hospitals were classified as primary, secondary, tertiary (including infectious diseases hospitals), and paediatric hospitals. Five main ward types were defined: medical wards, surgical wards, intensive-care units, haematology oncology wards, and medical transplantation (bone marrow or solid transplants) wards. Data recorded included patient characteristics, antimicrobials received, diagnosis, therapeutic indication according to predefined lists, and markers of prescribing quality (eg, whether a stop or review date were recorded, and whether local prescribing guidelines existed and were adhered to). We report findings for adult inpatients. Findings: The Global-PPS for 2015 included adult data from 303 hospitals in 53 countries, including eight lower-middle-income and 17 upper-middle-income countries. 86 776 inpatients were admitted to 3315 adult wards, of whom 29 891 (34·4%) received at least one antimicrobial. 41 213 antimicrobial prescriptions were issued, of which 36 792 (89·3%) were antibacterial agents for systemic use. The top three antibiotics prescribed worldwide were penicillins with β-lactamase inhibitors, third-generation cephalosporins, and fluoroquinolones. Carbapenems were most frequently prescribed in Latin America and west and central Asia. Of patients who received at least one antimicrobial, 5926 (19·8%) received a targeted antibacterial treatment for systemic use, and 1769 (5·9%) received a treatment targeting at least one multidrug-resistant organism. The frequency of health-care-associated infections was highest in Latin America (1518 [11·9%]) and east and south Asia (5363 [10·1%]). Overall, the reason for treatment was recorded in 31 694 (76·9%) of antimicrobial prescriptions, and a stop or review date in 15 778 (38·3%). Local antibiotic guidelines were missing for 7050 (19·2%) of the 36 792 antibiotic prescriptions, and guideline compliance was 77·4%. Interpretation: The Global-PPS showed that worldwide surveillance can be accomplished with voluntary participation. It provided quantifiable measures to assess and compare the quantity and quality of antibiotic prescribing and resistance in hospital patients worldwide. These data will help to improve the quality of antibiotic prescribing through education and practice changes, particularly in low-income and middle-income countries that have no tools to monitor antibiotic prescribing in hospitals. Funding: bioMérieux
Erythropoietin: a multimodal neuroprotective agent
The tissue protective functions of the hematopoietic growth factor erythropoietin (EPO) are independent of its action on erythropoiesis. EPO and its receptors (EPOR) are expressed in multiple brain cells during brain development and upregulated in the adult brain after injury. Peripherally administered EPO crosses the blood-brain barrier and activates in the brain anti-apoptotic, anti-oxidant and anti-inflammatory signaling in neurons, glial and cerebrovascular endothelial cells and stimulates angiogenesis and neurogenesis. These mechanisms underlie its potent tissue protective effects in experimental models of stroke, cerebral hemorrhage, traumatic brain injury, neuroinflammatory and neurodegenerative disease. The preclinical data in support of the use of EPO in brain disease have already been translated to first clinical pilot studies with encouraging results with the use of EPO as a neuroprotective agent
- …