569 research outputs found

    Very extended cold gas, star formation and outflows in the halo of a bright QSO at z>6

    Get PDF
    Past observations of QSO host galaxies at z >6 have found cold gas and star formation on compact scales of a few kiloparsecs. We present new high sensitivity IRAM PdBI follow-up observations of the [CII] 158micron emission line and FIR continuum in the host galaxy of SDSS J1148+5152, a luminous QSO at redshift 6.4189. We find that a large fraction of the gas traced by [CII] is at high velocities, up to ~1400 km/s relative to the systemic velocity, confirming the presence of a major quasar-driven outflow indicated by previous observations. The outflow has a complex morphology and reaches a maximum projected radius of ~30 kpc. The extreme spatial extent of the outflow allows us, for the first time in an external galaxy, to estimate mass-loss rate, kinetic power and momentum rate of the outflow as a function of the projected distance from the nucleus and the dynamical time-scale. These trends reveal multiple outflow events during the past 100 Myr, although the bulk of the mass, energy and momentum appear to have been released more recently, within the past ~20 Myr. Surprisingly, we discover that also the quiescent gas at systemic velocity is extremely extended. More specifically, we find that, while 30% of the [CII] within v\in(-200, 200) km/s traces a compact component that is not resolved by our observations, 70% of the [CII] emission in this velocity range is extended, with a projected FWHM size of 17.4+-1.4 kpc. We detect FIR continuum emission associated with both the compact and the extended [CII] components, although the extended FIR emission has a FWHM of 11+-3 kpc, thus smaller than the extended [CII] source. Overall, our results indicate that the cold gas traced by [CII] is distributed up to r~30 kpc. A large fraction of extended [CII] is likely associated with star formation on large scales, but the [CII] source extends well beyond the FIR continuum.Comment: Accepted for publication in A&A, 21 pages, 18 figures, 3 tables (v2: accepted version, discussion expanded in Sect. 3, 4 and in the Appendices, minor changes elsewhere

    NGC6240: extended CO structures and their association with shocked gas

    Full text link
    We present deep CO observations of NGC6240 performed with the IRAM Plateau de Bure Interferometer (PdBI). NGC6240 is the prototypical example of a major galaxy merger in progress, caught at an early stage, with an extended, strongly-disturbed butterfly-like morphology and the presence of a heavily obscured active nucleus in the core of each progenitor galaxy. The CO line shows a skewed profile with very broad and asymmetric wings detected out to velocities of -600 km/s and +800 km/s with respect to the systemic velocity. The PdBI maps reveal the existence of two prominent structures of blueshifted CO emission. One extends eastward, i.e. approximately perpendicular to the line connecting the galactic nuclei, over scales of ~7 kpc and shows velocities up to -400 km/s. The other extends southwestward out to ~7 kpc from the nuclear region, and has a velocity of -100 km/s with respect to the systemic one. Interestingly, redshifted emission with velocities 400 to 800 km/s is detected around the two nuclei, extending in the east-west direction, and partly overlapping with the eastern blue-shifted structure, although tracing a more compact region of size ~1.7 kpc. The overlap between the southwestern CO blob and the dust lanes seen in HST images, which are interpreted as tidal tails, indicates that the molecular gas is deeply affected by galaxy interactions. The eastern blueshifted CO emission is co-spatial with an Halpha filament that is associated with strong H2 and soft X-ray emission. The analysis of Chandra X-ray data provides strong evidence for shocked gas at the position of the Halpha emission. Its association with outflowing molecular gas supports a scenario where the molecular gas is compressed into a shock wave that propagates eastward from the nuclei. If this is an outflow, the AGN are likely the driving force.Comment: Accepted for publication in A&

    Ultraviolet Completion of Flavour Models

    Full text link
    Effective Flavour Models do not address questions related to the nature of the fundamental renormalisable theory at high energies. We study the ultraviolet completion of Flavour Models, which in general has the advantage of improving the predictivity of the effective models. In order to illustrate the important features we provide minimal completions for two known A4 models. We discuss the phenomenological implications of the explicit completions, such as lepton flavour violating contributions that arise through the exchange of messenger fields.Comment: 18 pages, 8 figure

    The multi-phase winds of Markarian 231: from the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow

    Get PDF
    We present the best sensitivity and angular resolution maps of the molecular disk and outflow of Mrk 231, as traced by CO observations obtained with IRAM/PdBI, and we analyze archival Chandra and NuSTAR observations. We constrain the physical properties of both the molecular disk and outflow, the presence of a highly-ionized ultra-fast nuclear wind, and their connection. The molecular outflow has a size of ~1 kpc, and extends in all directions around the nucleus, being more prominent along the south-west to north-east direction, suggesting a wide-angle biconical geometry. The maximum projected velocity of the outflow is nearly constant out to ~1 kpc, thus implying that the density of the outflowing material decreases from the nucleus outwards as r−2r^{-2}. This suggests that either a large part of the gas leaves the flow during its expansion or that the bulk of the outflow has not yet reached out to ~1 kpc, thus implying a limit on its age of ~1 Myr. We find M˙OF=[500−1000] M⊙ yr−1\dot M_{OF}=[ 500-1000]~ M_{\odot}~yr^{-1} and E˙kin,OF=[7−10]×1043\dot E_{kin,OF}=[7-10]\times 10^{43} erg s−1^{-1}. Remarkably, our analysis of the X-ray data reveals a nuclear ultra-fast outflow (UFO) with velocity -20000 km s−1^{-1}, M˙UFO=[0.3−2.1] M⊙yr−1\dot M_{UFO}=[0.3- 2.1] ~M_\odot yr^{-1}, and momentum load P˙UFO/P˙rad=[0.2−1.6]\dot P_{UFO}/\dot P_{rad}=[0.2-1.6].We find E˙kin,UFO∌E˙kin,OF\dot E_{kin,UFO}\sim \dot E_{kin,OF} as predicted for outflows undergoing an energy conserving expansion. This suggests that most of the UFO kinetic energy is transferred to mechanical energy of the kpc-scale outflow, strongly supporting that the energy released during accretion of matter onto super-massive black holes is the ultimate driver of giant massive outflows. We estimate a momentum boost P˙OF/P˙UFO≈[30−60]\dot P_{OF}/\dot P_{UFO}\approx [30-60]. The ratios E˙kin,UFO/Lbol,AGN=[1−5]%\dot E_{kin, UFO}/L_{bol,AGN} =[ 1-5]\% and E˙kin,OF/Lbol,AGN=[1−3]%\dot E_{kin,OF}/L_{bol,AGN} = [1-3]\% agree with the requirements of the most popular models of AGN feedback.Comment: 16 pages, 17 figures. Accepted for publication in A&

    The Golden Ratio Prediction for the Solar Angle from a Natural Model with A5 Flavour Symmetry

    Full text link
    We formulate a consistent model predicting, in the leading order approximation, maximal atmospheric mixing angle, vanishing reactor angle and tan {\theta}_12 = 1/{\phi} where {\phi} is the Golden Ratio. The model is based on the flavour symmetry A5 \times Z5 \times Z3, spontaneously broken by a set of flavon fields. By minimizing the scalar potential of the theory up to the next-to-leading order in the symmetry breaking parameter, we demonstrate that this mixing pattern is naturally achieved in a finite portion of the parameter space, through the vacuum alignment of the flavon fields. The leading order approximation is stable against higher-order corrections. We also compare our construction to other models based on discrete symmetry groups.Comment: 28 pages, 2 figures. Minor changes, references added. Corrected typos in Appendix A. Version appeared on JHE

    A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A4

    Get PDF
    We discuss a grand unified model based on SUSY SU(5) in extra dimensions and on the flavour group A4xU(1) which, besides reproducing tri-bimaximal mixing for neutrinos with the accuracy required by the data, also leads to a natural description of the observed pattern of quark masses and mixings.Comment: 19 page

    The rest-frame UV-to-optical spectroscopy of APM 08279+5255 - BAL classification and black hole mass estimates

    Get PDF
    We present the analysis of the rest-frame optical-to-UV spectrum of APM 08279+5255, a well-known lensed broad absorption line (BAL) quasar at z=3.911z = 3.911. The spectroscopic data are taken with the optical DOLoRes and near-IR NICS instruments at TNG, and include the previously unexplored range between C III] λ\lambda1910 and [O III] λλ\lambda\lambda4959,5007. We investigate the possible presence of multiple BALs by computing "balnicity" and absorption indexes (i.e. BI, BI0_0 and AI) for the transitions Si IV λ\lambda1400, C IV λ\lambda1549, Al III λ\lambda1860 and Mg II λ\lambda2800. No clear evidence for the presence of absorption features is found in addition to the already known, prominent BAL associated to C IV, which supports a high-ionization BAL classification for APM 08279+5255. We also study the properties of the [O III], HÎČ\beta and Mg II emission lines. We find that [O III] is intrinsically weak (F[OIII]/FHÎČâ‰Č0.04F_{\rm [OIII]}/F_{\rm H\beta} \lesssim 0.04), as it is typically found in luminous quasars with a strongly blueshifted C IV emission line (∌\sim2500 km s−1^{-1} for APM 08279+5255). We compute the single-epoch black hole mass based on Mg II and HÎČ\beta broad emission lines, finding MBH=(2Ă·3)×1010Ό−1M_{\rm BH} = (2 \div 3) \times 10^{10}\mu^{-1} M⊙_\odot, with the magnification factor ÎŒ\mu that can vary between 4 and 100 according to CO and rest-frame UV-to-mid-IR imaging respectively. Using a Mg II equivalent width (EW)-to-Eddington ratio relation, the EWMgII∌27_{\rm MgII} \sim 27 \AA\ measured for APM 08279+5255 translates into an Eddington ratio of ∌\sim0.4, which is more consistent with ÎŒ=4\mu=4. This magnification factor also provides a value of MBHM_{\rm BH} that is consistent with recent reverberation-mapping measurements derived from C IV and Si IV.Comment: 10 pages, 4 figures, 4 tables, accepted for publication in A&

    Type 2 Quasars at the heart of dust-obscured galaxies (DOGs) at high z

    Get PDF
    Dust‐obscured galaxies (DOGs) represent a recently‐discovered, intriguing class of mid‐IR luminous sources at high redshifts. Evidence is mounting that DOGs (selected on the basis of extreme optical/mid‐IR color cut and high mid‐IR flux level) may represent systems caught in the process of host galaxy formation and intense SMBH growth. Here we report the results of an X‐ray spectroscopic survey aimed at studying the X‐ray properties of these sources and establishing the fraction of Type 2 quasars among them

    High-z X-ray Obscured Quasars in Galaxies with Extreme Mid-IR/Optical Colors

    Get PDF
    Extreme Optical/Mid‐IR color cuts have been used to uncover a population of dust‐enshrouded, mid‐IR luminous galaxies at high redshifts. Several lines of evidence point towards the presence of an heavily absorbed, possibly Compton‐thick quasar at the heart of these systems. Nonetheless, the X‐ray spectral properties of these intriguing sources still remain largely unexplored. Here we present an X‐ray spectroscopic study of a large sample of 44 extreme dust‐obscured galaxies (EDOGs) with F_(24ÎŒm)/F_R > 2000 and F_(24ÎŒm) > 1.3 mJy selected from a 6 deg^2 region in the SWIRE fields. The application of our selection criteria to a wide area survey has been capable of unveiling a population of X‐ray luminous, absorbed z > 1 quasars which is mostly missed in the traditional optical/X‐ray surveys performed so far. Advances in the understanding of the X‐ray properties of these recently‐discovered sources by Simbol‐X observations will be also discussed
    • 

    corecore