67 research outputs found

    Design matters : an evaluation of the impact of small man-made forest clearings on tropical bats using a before-after-control-impact design

    Get PDF
    In recent years, large clearings (>1000 ha) accounted for gradually smaller amounts of total annual deforestation in the Brazilian Amazon, whereas the proportion of small clearings (<50 ha) nowadays represents more than 80% of annual deforestation. Despite the ubiquity of small clearings in fragmented Amazonian landscapes, most fragmentation research has focused on the effects of large-scale deforestation, leading to a poor understanding of the impacts of smaller barriers on Amazonian vertebrates. We capitalized on the periodical re-isolation of experimental forest fragments at the Biological Dynamics of Forest Fragments Project in the Central Amazon as a before-after-control-impact experiment to investigate the short-term effects of small clearings on bat assemblages. Over the course of three years we sampled six control sites in continuous forest, the interiors and edges of eight forest fragments as well as eight sites in the surrounding matrix. Sampling took place both before and after the experimental manipulation (clearing of a 100 m wide strip of regrowth around each fragment), resulting in ~4000 bat captures. Species were classified as old-growth specialists and habitat generalists according to their habitat affinities and a joint species distribution modeling framework was used to investigate the effect of fragment re-isolation on species occupancy. Following fragment re-isolation, species richness declined in all habitats other than fragment edges and, although responses were idiosyncratic, this decline was more pronounced for forest specialist than for generalist species. Additionally, fragment re-isolation led to a reduction in the similarity between assemblages in modified habitats (fragment interiors, edges and matrix) and continuous forest. Sampling of controls in continuous forest both prior to and after reisolation revealed that much of the variation in bat species occupancy between sampling periods did not arise from fragment re-isolation but rather reflected natural spatiotemporal variability. This emphasizes the need to sample experimental controls both before and after experimental manipulation and suggests caution in the interpretation of results from studies in which the effects of habitat transformations are assessed based solely on data collected using space-for-time substitution approaches

    Design matters : an evaluation of the impact of small man-made forest clearings on tropical bats using a before-after-control-impact design

    Get PDF
    In recent years, large clearings (>1000 ha) accounted for gradually smaller amounts of total annual deforestation in the Brazilian Amazon, whereas the proportion of small clearings (<50 ha) nowadays represents more than 80% of annual deforestation. Despite the ubiquity of small clearings in fragmented Amazonian landscapes, most fragmentation research has focused on the effects of large-scale deforestation, leading to a poor understanding of the impacts of smaller barriers on Amazonian vertebrates. We capitalized on the periodical re-isolation of experimental forest fragments at the Biological Dynamics of Forest Fragments Project in the Central Amazon as a before-after-control-impact experiment to investigate the short-term effects of small clearings on bat assemblages. Over the course of three years we sampled six control sites in continuous forest, the interiors and edges of eight forest fragments as well as eight sites in the surrounding matrix. Sampling took place both before and after the experimental manipulation (clearing of a 100 m wide strip of regrowth around each fragment), resulting in ~4000 bat captures. Species were classified as old-growth specialists and habitat generalists according to their habitat affinities and a joint species distribution modeling framework was used to investigate the effect of fragment re-isolation on species occupancy. Following fragment re-isolation, species richness declined in all habitats other than fragment edges and, although responses were idiosyncratic, this decline was more pronounced for forest specialist than for generalist species. Additionally, fragment re-isolation led to a reduction in the similarity between assemblages in modified habitats (fragment interiors, edges and matrix) and continuous forest. Sampling of controls in continuous forest both prior to and after reisolation revealed that much of the variation in bat species occupancy between sampling periods did not arise from fragment re-isolation but rather reflected natural spatiotemporal variability. This emphasizes the need to sample experimental controls both before and after experimental manipulation and suggests caution in the interpretation of results from studies in which the effects of habitat transformations are assessed based solely on data collected using space-for-time substitution approaches

    Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation

    Get PDF
    Concerted political attention has focused on reducing deforestation1,2,3, and this remains the cornerstone of most biodiversity conservation strategies4,5,6. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes6. These disturbances occur both within forests, including selective logging and wildfires7,8, and at the landscape level, through edge, area and isolation effects9. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69–80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil’s Forest Code5, resulted in a 39–54% loss of conservation value: 96–171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará’s strictly protected areas is equivalent to the loss of 92,000–139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems

    Comparing tau status determined via plasma pTau181, pTau231 and [Âč⁞F]MK6240 tau-PET

    Get PDF
    Background: Tau in Alzheimer's disease (AD) is assessed via cerebrospinal fluid (CSF) and Positron emission tomography (PET). Novel methods to detect phosphorylated tau (pTau) in blood have been recently developed. We aim to investigate agreement of tau status as determined by [18F]MK6240 tau-PET, plasma pTau181 and pTau231. / Methods: We assessed cognitively unimpaired young, cognitively unimpaired, mild cognitive impairment and AD individuals with [18F]MK6240, plasma pTau181, pTau 231, [18F]AZD4694 amyloid-PET and MRI. A subset underwent CSF assessment. We conducted ROC curves to obtain cut-off values for plasma pTau epitopes. Individuals were categorized as positive or negative in all biomarkers. We then compared the distribution among concordant and discordant groups in relation to diagnosis, AÎČ status, APOEΔ4 status, [18F]AZD4694 global SUVR, hippocampal volume and CSF pTau181. / Findings: The threshold for positivity was 15.085 pg/mL for plasma pTau181 and 17.652 pg/mL for plasma pTau231. Most individuals had concordant statuses, however, 18% of plasma181/PET, 26% of plasma231/PET and 25% of the pTau231/pTau181 were discordant. Positivity to at least one biomarker was often accompanied by diagnosis of cognitive impairment, AÎČ positivity, APOEΔ4 carriership, higher levels of [18F]AZD4694 global SUVR, hippocampal atrophy and CSF pTau181. / Interpretation: Plasma pTau181, pTau231 and [18F]MK6240 seem to reflect different stages of tau progression. Plasma biomarkers can be useful in the context of diagnostic information and clinical trials, to evaluate the disease stage. Moreover, they seem to confidently evaluate tau-PET positivity. / Funding: Moreover, this study was supported by Weston Brain Institute, Canadian Institute of Health Research and Fonds de Recherche du QuĂ©bec

    First report on dung beetles in intra-Amazonian savannahs in Roraima, Brazil

    Get PDF
    This is the first study to address the dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) diversity in intra-Amazonian savannahs in the state of Roraima, Brazil. Our aim was to survey the dung beetle fauna associated with these savannahs (regionally called 'lavrado'), since little is known about the dung beetles from this environment. We conducted three field samples using pitfall traps baited with human dung in savannah areas near the city of Boa Vista during the rainy seasons of 1996, 1997, and 2008. We collected 383 individuals from ten species, wherein six have no previous record in intra-Amazonian savannahs. The most abundant species were Ontherus appendiculatus (Mannerheim, 1829), Canthidium aff. humerale (Germar, 1813), Dichotomius nisus (Olivier, 1789), and Pseudocanthon aff. xanthurus (Blanchard, 1846). We believe that knowing the dung beetles diversity associated with the intra-Amazonian savannahs is ideal for understanding the occurrence and distribution of these organisms in a highly threatened environment, it thus being the first step towards conservation strategy development

    APOEΔ4 associates with microglial activation independently of AÎČ plaques and tau tangles

    Get PDF
    Animal studies suggest that the apolipoprotein E Δ4 (APOEΔ4) allele is a culprit of early microglial activation in Alzheimer's disease (AD). Here, we tested the association between APOEΔ4 status and microglial activation in living individuals across the aging and AD spectrum. We studied 118 individuals with positron emission tomography for amyloid-ÎČ (AÎČ; [18F]AZD4694), tau ([18F]MK6240), and microglial activation ([11C]PBR28). We found that APOEΔ4 carriers presented increased microglial activation relative to noncarriers in early Braak stage regions within the medial temporal cortex accounting for AÎČ and tau deposition. Furthermore, microglial activation mediated the AÎČ-independent effects of APOEΔ4 on tau accumulation, which was further associated with neurodegeneration and clinical impairment. The physiological distribution of APOE mRNA expression predicted the patterns of APOEΔ4-related microglial activation in our population, suggesting that APOE gene expression may regulate the local vulnerability to neuroinflammation. Our results support that the APOEΔ4 genotype exerts AÎČ-independent effects on AD pathogenesis by activating microglia in brain regions associated with early tau deposition

    Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests

    Get PDF
    © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd. Secondary forests (SFs) regenerating on previously deforested land account for large, expanding areas of tropical forest cover. Given that tropical forests rank among Earth’s most important reservoirs of carbon and biodiversity, SFs play an increasingly pivotal role in the carbon cycle and as potential habitat for forest biota. Nevertheless, their capacity to regain the biotic attributes of undisturbed primary forests (UPFs) remains poorly understood. Here, we provide a comprehensive assessment of SF recovery, using extensive tropical biodiversity, biomass, and environmental datasets. These data, collected in 59 naturally regenerating SFs and 30 co-located UPFs in the eastern Amazon, cover >1,600 large- and small-stemmed plant, bird, and dung beetles species and a suite of forest structure, landscape context, and topoedaphic predictors. After up to 40 years of regeneration, the SFs we surveyed showed a high degree of biodiversity resilience, recovering, on average among taxa, 88% and 85% mean UPF species richness and composition, respectively. Across the first 20 years of succession, the period for which we have accurate SF age data, biomass recovered at 1.2% per year, equivalent to a carbon uptake rate of 2.25 Mg/ha per year, while, on average, species richness and composition recovered at 2.6% and 2.3% per year, respectively. For all taxonomic groups, biomass was strongly associated with SF species distributions. However, other variables describing habitat complexity—canopy cover and understory stem density—were equally important occurrence predictors for most taxa. Species responses to biomass revealed a successional transition at approximately 75 Mg/ha, marking the influx of high-conservation-value forest species. Overall, our results show that naturally regenerating SFs can accumulate substantial amounts of carbon and support many forest species. However, given that the surveyed SFs failed to return to a typical UPF state, SFs are not substitutes for UPFs

    Comparative radiological features of disseminated disease due to Mycobacterium tuberculosis vs non-tuberculosis mycobacteria among AIDS patients in Brazil

    Get PDF
    Background: Disseminated mycobacterial disease is an important cause of morbidity and mortality in patients with HIV-infection. Nonspecific clinical presentation makes the diagnosis difficult and sometimes neglected. Methods: We conducted a retrospective cohort study to compare the presentation of disseminated Mycobacterial tuberculosis (MTB) and non-tuberculous Mycobacterial (NTM) disease in HIV-positive patients from 1996 to 2006 in Brazil. Results: Tuberculosis (TB) was diagnosed in 65 patients (67.7%) and NTM in 31 (32.3%) patients. Patients with NTM had lower CD4 T cells counts (median 13.0 cells/mm3 versus 42.0 cells/mm3, P = 0.002). Patients with tuberculosis had significantly more positive acid-fast smears (48.0% vs 13.6%, P = 0.01). On chest X-ray, miliary infiltrate was only seen in patients with MTB (28.1% vs. 0.0%, P = 0.01). Pleural effusion was more common in patients with MTB (45.6% vs. 13.0%, P = 0.01). Abdominal adenopathy (73.1% vs. 33.3%, P = 0.003) and splenic hypoechoic nodules (38.5% vs. 0.0%, P = 0.002) were more common in patients with TB. Conclusion: Miliary pulmonary pattern on X-ray, pleural effusion, abdominal adenopathy, and splenic hypoechoic nodules were imaging findings associated with the diagnosis of tuberculosis in HIV-infected patients. Recognition of these imaging features will help to distinguish TB from NTM in AIDS patients with fever of unknown origin due to disseminated mycobacterial disease
    • 

    corecore