7,530 research outputs found

    Liquid crystal VAN tilt bias by surface relief patterning

    Get PDF
    Liquid Crystal Displays require controlled alignment of the liquid crystal molecular director at its confining surfaces. These surfaces may be coated glass or in the case of 'Liquid Crystal On Silicon' (LCOS) technology, a silicon backplane. In the case of Vertically Aligned Nematic (VAN) cells an initially vertical orientation is used and from this the director may tilt in any direction. Some means is required to bias the tilt in a consistent direction to avoid the occurrence of differently oriented domains. For VAN cells one tilt bias method is oblique deposition of silicon oxide. An alternative method which eliminates concerns over consistency of deposition angle over a large substrate area is the use of surface relief structures to induce tilt bias. This is attractive for LCOS devices. Liquid crystal modelling tools [1] have been used to simulate the effects of rectangular and triangular shaped 'bumps' and 'dips' protruding from and extending into the LC's enclosing surfaces respectively. The director orientation and optical transmission of the LC pixels biased in this way are examined as a function of time during the switching cycle and spatially across the pixel to show that the combination provides controllable tilt bias

    Taking climate action: measuring carbon emissions in the garment sector in Asia

    Full text link
    This paper examines carbon emissions across the garment sector as counted using the two prominent methodologies for calculating emissions – the life cycle assessment (LCA) and carbon accounting in line with the Greenhouse Gas Protocol. The purpose of this paper is to provide insight into where and why the carbon intensity of textiles and garments varies across the supply chain and where activities to decarbonize the sector should be prioritized.</jats:p

    Airborne Pollen, Allergens, and Proteins: A Comparative Study of Three Sampling Methods

    Get PDF
    Nowadays, there is a wide range of different methods available for the monitoring of pollen and allergens, but their relative efficiency is sometimes unclear, as conventional pollen monitoring does not thoroughly describe pollen allergenicity. This study aims to evaluate airborne pollen, allergen, and protein levels, associating them with meteorological and chemical parameters. The sampling was performed in Bologna (Italy) during the grass flowering period, with three different devices: a Cyclone sampler (CS), a Dicothomous sampler (DS), and a Berner impactor (BI). Total proteins were extracted from aerosol samples, and grass allergens Phl p 1 and Phl p 5 were quantified by ELISA. Airborne Poaceae pollen concentrations were also evaluated, using a Hirst-type trap. Proteins and allergens collected by CS resulted about ten times higher than those collected by the other two instruments, possibly due to their different cut-offs, while DS and BI results appeared consistent only for the total proteins collected in the fine fraction (1.3 vs. 1.6 mu g/m(3)). Airborne proteins correlated neither with Poaceae pollen nor with its aeroallergens, while aeroallergens correlated with pollen only in the coarse particulate, indicating the presence of pollen-independent aeroallergens in the fine particulate, promoted by high wind speed

    An ORC/Cdc6/MCM2-7 Complex Is Formed in a Multistep Reaction to Serve as a Platform for MCM Double-Hexamer Assembly

    Get PDF
    In Saccharomyces cerevisiae and higher eukaryotes, the loading of the replicative helicase MCM2-7 onto DNA requires the combined activities of ORC, Cdc6, and Cdt1. These proteins load MCM2-7 in an unknown way into a double hexamer around DNA. Here we show that MCM2-7 recruitment by ORC/Cdc6 is blocked by an autoinhibitory domain in the C terminus of Mcm6. Interestingly, Cdt1 can overcome this inhibitory activity, and consequently the Cdt1-MCM2-7 complex activates ORC/Cdc6 ATP-hydrolysis to promote helicase loading. While Cdc6 ATPase activity is known to facilitate Cdt1 release and MCM2-7 loading, we discovered that Orc1 ATP-hydrolysis is equally important in this process. Moreover, we found that Orc1/Cdc6 ATP-hydrolysis promotes the formation of the ORC/Cdc6/MCM2-7 (OCM) complex, which functions in MCM2-7 double-hexamer assembly. Importantly, CDK-dependent phosphorylation of ORC inhibits OCM establishment to ensure once per cell cycle replication. In summary, this work reveals multiple critical mechanisms that redefine our understanding of DNA licensing

    Dense active matter model of motion patterns in confluent cell monolayers

    Get PDF
    Epithelial cell monolayers show remarkable displacement and velocity correlations over distances of ten or more cell sizes that are reminiscent of supercooled liquids and active nematics. We show that many observed features can be described within the framework of dense active matter, and argue that persistent uncoordinated cell motility coupled to the collective elastic modes of the cell sheet is sufficient to produce swirl-like correlations. We obtain this result using both continuum active linear elasticity and a normal modes formalism, and validate analytical predictions with numerical simulations of two agent-based cell models, soft elastic particles and the self-propelled Voronoi model together with in-vitro experiments of confluent corneal epithelial cell sheets. Simulations and normal mode analysis perfectly match when tissue-level reorganisation occurs on times longer than the persistence time of cell motility. Our analytical model quantitatively matches measured velocity correlation functions over more than a decade with a single fitting parameter.Comment: updated version accepted for publication in Nat. Com

    Mass hierarchy, 2-3 mixing and CP-phase with Huge Atmospheric Neutrino Detectors

    Full text link
    We explore the physics potential of multi-megaton scale ice or water Cherenkov detectors with low (∌1\sim 1 GeV) threshold. Using some proposed characteristics of the PINGU detector setup we compute the distributions of events versus neutrino energy EÎœE_\nu and zenith angle Ξz\theta_z, and study their dependence on yet unknown neutrino parameters. The (EΜ−Ξz)(E_\nu - \theta_z) regions are identified where the distributions have the highest sensitivity to the neutrino mass hierarchy, to the deviation of the 2-3 mixing from the maximal one and to the CP-phase. We evaluate significance of the measurements of the neutrino parameters and explore dependence of this significance on the accuracy of reconstruction of the neutrino energy and direction. The effect of degeneracy of the parameters on the sensitivities is also discussed. We estimate the characteristics of future detectors (energy and angle resolution, volume, etc.) required for establishing the neutrino mass hierarchy with high confidence level. We find that the hierarchy can be identified at 3σ3\sigma -- 10σ10\sigma level (depending on the reconstruction accuracies) after 5 years of PINGU operation.Comment: 39 pages, 21 figures. Description of Fig.3 correcte

    Removing exogenous information using pedigree data

    Full text link
    Management of certain populations requires the preservation of its pure genetic background. When, for different reasons, undesired alleles are introduced, the original genetic conformation must be recovered. The present study tested, through computer simulations, the power of recovery (the ability for removing the foreign information) from genealogical data. Simulated scenarios comprised different numbers of exogenous individuals taking partofthe founder population anddifferent numbers of unmanaged generations before the removal program started. Strategies were based on variables arising from classical pedigree analyses such as founders? contribution and partial coancestry. The ef?ciency of the different strategies was measured as the proportion of native genetic information remaining in the population. Consequences on the inbreeding and coancestry levels of the population were also evaluated. Minimisation of the exogenous founders? contributions was the most powerful method, removing the largest amount of genetic information in just one generation.However, as a side effect, it led to the highest values of inbreeding. Scenarios with a large amount of initial exogenous alleles (i.e. high percentage of non native founders), or many generations of mixing became very dif?cult to recover, pointing out the importance of being careful about introgression events in populatio
    • 

    corecore