1,585 research outputs found

    The Impact of Social Media on Panic During the COVID-19 Pandemic in Iraqi Kurdistan: Online Questionnaire Study

    Get PDF
    Background: In the first few months of 2020, information and news reports about the coronavirus disease (COVID-19) were rapidly published and shared on social media and social networking sites. While the field of infodemiology has studied information patterns on the Web and in social media for at least 18 years, the COVID-19 pandemic has been referred to as the first social media infodemic. However, there is limited evidence about whether and how the social media infodemic has spread panic and affected the mental health of social media users. Objective: The aim of this study is to determine how social media affects self-reported mental health and the spread of panic about COVID-19 in the Kurdistan Region of Iraq. Methods: To carry out this study, an online questionnaire was prepared and conducted in Iraqi Kurdistan, and a total of 516 social media users were sampled. This study deployed a content analysis method for data analysis. Correspondingly, data were analyzed using SPSS software. Results: Participants reported that social media has a significant impact on spreading fear and panic related to the COVID-19 outbreak in Iraqi Kurdistan, with a potential negative influence on people’s mental health and psychological well-being. Facebook was the most used social media network for spreading panic about the COVID-19 outbreak in Iraq. We found a significant positive statistical correlation between self-reported social media use and the spread of panic related to COVID-19 (R=.8701). Our results showed that the majority of youths aged 18-35 years are facing psychological anxiety. Conclusions: During lockdown, people are using social media platforms to gain information about COVID-19. The nature of the impact of social media panic among people varies depending on an individual's gender, age, and level of education. Social media has played a key role in spreading anxiety about the COVID-19 outbreak in Iraqi Kurdistan

    Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks

    Full text link
    The benefits of autonomous vehicles (AVs) are widely acknowledged, but there are concerns about the extent of these benefits and AV risks and unintended consequences. In this article, we first examine AVs and different categories of the technological risks associated with them. We then explore strategies that can be adopted to address these risks, and explore emerging responses by governments for addressing AV risks. Our analyses reveal that, thus far, governments have in most instances avoided stringent measures in order to promote AV developments and the majority of responses are non-binding and focus on creating councils or working groups to better explore AV implications. The US has been active in introducing legislations to address issues related to privacy and cybersecurity. The UK and Germany, in particular, have enacted laws to address liability issues, other countries mostly acknowledge these issues, but have yet to implement specific strategies. To address privacy and cybersecurity risks strategies ranging from introduction or amendment of non-AV specific legislation to creating working groups have been adopted. Much less attention has been paid to issues such as environmental and employment risks, although a few governments have begun programmes to retrain workers who might be negatively affected.Comment: Transport Reviews, 201

    Improving the torque generation in self-sensing BLDC drives by shaping the current waveform

    Get PDF
    Brushless DC drives are widely used in different fields of application because of their high efficiency and power density. Torque ripple can be considered one of the drawbacks of these drives. This paper proposes a method to reduce the torque ripple in BLDC drives. For this reason, the current amplitude is adapted to the rotor position rather than to be kept constant as done in a conventional commutation method. This is done by computing an optimum reference current based on the phase back-EMF waveform. The proposed approach is implemented in a self-sensing drive so its applicability to self-sensing BLDC motor drives is verified. Simulation and experimental results are given and discussed to show that the proposed method actually is able to improve torque production

    Implementing SVPWM Technique to an Axial Flux Permanent Magnet Synchronous Motor Drive with Internal Model Current Controller

    Get PDF
    This paper presents a study of axial flux permanent magnet synchronous motor (AFPMSM) drive system. An internal model control (IMC) strategy is introduced to control the AFPMSM drive through currents, leading to an extension of PI control with integrators added in the off-diagonal elements to remove the cross-coupling effects between the applied voltages and stator currents in a feed-forward manner. The reference voltage is applied through a space vector pulse width modulation (SVPWM) unit. A diverse set of test scenarios has been realized to comparatively evaluate the state estimation of the sensor-less AFPMSM drive performances under the implemented IMCbased control regime using a SVPWM inverter. The resulting MATLAB simulation outcomes in the face of no-load, nominal load and speed reversal clearly illustrate the well-behaved performances of IMC controller and SVPWM technique to an Axial Flux PM Motor Drive system

    Differentiating U(1)U(1)^\prime supersymmetric models with right sneutrino and neutralino dark matter

    Full text link
    We perform a detailed analysis of dark matter signals of supersymmetric models containing an extra U(1)U(1)^\prime gauge group. We investigate scenarios in which either the right sneutrino or the lightest neutralino are phenomenologically acceptable dark matter candidates and we explore the parameter spaces of different supersymmetric realisations featuring an extra U(1)U(1)^\prime. We impose consistency with low energy observables, with known mass limits for the superpartners and ZZ^\prime bosons, as well as with Higgs boson signal strengths, and we moreover verify that predictions for the anomalous magnetic moment of the muon agree with the experimental value and require that the dark matter candidate satisfies the observed relic density and direct and indirect dark matter detection constraints. For the case where the sneutrino is the dark matter candidate, we find distinguishing characteristics among different U(1)U(1)^\prime mixing angles. If the neutralino is the lightest supersymmetric particle, its mass is heavier than that of the light sneutrino in scenarios where the latter is a dark matter candidate, the parameter space is less restricted and differentiation between models is more difficult. We finally comment on the possible collider tests of these models.Comment: 21 pages, 11 figures, version accepted by PR

    Bir gerçek mimar

    Get PDF
    Taha Toros Arşivi, Dosya No: 2/A-Albert Gabriel. Not: Gazetenin "7 Tepeden" köşesinde yayımlanmıştır.İstanbul Kalkınma Ajansı (TR10/14/YEN/0033) İstanbul Development Agency (TR10/14/YEN/0033
    corecore