228 research outputs found

    Nota corta. Especies de ácaros fitoseidos (Acari: Phytoseiidae) en manzanos de Río Negro, Argentina

    Get PDF
    The presence of phytoseiid mites was determined in two unsprayed apple orchards at Cinco Saltos and Cipolletti, Río Negro Province, Argentina. Twenty apple trees were chosen in each orchard and a sample of 10 leaves per tree was taken at seven different sampling dates. Neoseiulus californicus (McGregor), Euseius fructicolus (Gonzalez &Schuster) and Paraseiulus talbii Athias-Henriot were found at Cinco Saltos, and Proprioseiopsis messor (Wainstein), N. californicus and Metaseiulus camelliae (Chant & Yoshida-Shaul) at Cipolletti. Of these species, only N. californicus has previously been reported from the Alto Valle del Río Negro region. Proprioseiopsis messor and Paraseiulus talbii are reported for the first time in South America and on the American Continent respectively.Se llevó a cabo un estudio para determinar la presencia de ácaros fitoseidos en dos plantaciones de manzanos no tratadas con plaguicidas, localizadas en Cinco Saltos y Cipolletti, Provincia de Río Negro, Argentina. Se seleccionaron 20 árboles en cada huerto y se tomó una muestra de 10 hojas por árbol en siete diferentes fechas de muestreo. Neoseiulus. californicus (McGregor), Euseius fructicolus (Gonzalez & Schuster) y Paraseiulus talbii Athias-Henriot fueron las especies identificadas en Cinco Saltos. Proprioseiopsis messor (Wainstein), N. californicus y Metaseiulus camelliae (Chant & Yoshida-Shaul) fueron identificadas en Cipolletti. De las especies recolectadas solamente había sido mencionada previamente N. californicus en la región del Alto Valle del Río Negro. P. messor y P. talbii constituyen nuevas citas para América del Sur y el continente americano, respectivamente

    Changes in intestinal microbiota, immune- and stress-related transcript levels in Senegalese sole (Solea senegalensis) fed plant ingredient diets intercropped with probiotics or immunostimulants

    Get PDF
    Author's accepted version (post-print).Available from 04/03/2018.Senegalese sole (Solea senegalensis) is a highly valued flatfish that grows well with diets containing plant ingredients but their effects on immune competence is still a matter of debate. The current study aimed to examine changes in innate immune parameters and gut microbiota in Senegalese sole fed with 35% or 72% of plant ingredients with or without probiotic or yeast supplementation. Overall, fish fed diets with 72% of plant ingredients showed lower transcript levels of key immune- and stress-related genes in distal intestine, rectum and head-kidney than the 35% diets. In particular, hsp90b mRNA levels in distal intestine were down-regulated by 70% and 60% with the use of high content of plant ingredients in the diet containing the multispecies probiotic and autolyzed yeast, respectively. Denaturing gradient gel electrophoresis showed lower similarity values for distal intestine than rectum. Also fish fed high content of plant ingredients displayed lower similarity values, pointing to a difference in the microbial populations between fish fed different plant ingredients content on the diet. Our data revealed that inclusion of plant ingredients was associated with differences in gene expression and a more diverse microbiota profile but without a significant effect on growth performance. Moreover, probiotic supplementation resulted in up-regulation of hsp90b, gpx, cat and apoa1 transcript levels in distal intestine concomitantly with a growth rate reduction compared to non-supplemented fish

    An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis

    Full text link
    Amphotericin B (AmpB) is active against leishmaniasis, but its use is hampered due to its high toxicity observed in patients. In this study, a nanoparticles-delivery system for AmpB (NQC-AmpB), containing chitosan and chondroitin sulfate molecules, was evaluated in BALB/c mice against Leishmania amazonensis. An in vivo biodistribution study, including biochemical and toxicological evaluations, was performed to evaluate the toxicity of AmpB. Nanoparticles were radiolabeled with technetium-99m and injected in mice. The products presented a similar biodistribution in the liver, spleen, and kidneys of the animals. Free AmpB induced alterations in the body weight of the mice, which, in the biochemical analysis, indicated hepatic and renal injury, as well as morphological damage to the kidneys of the animals. In general, no significant organic alteration was observed in the animals treated with NQC-AmpB. Mice were infected with L. amazonensis and treated with the nanoparticles or free AmpB; then, parasitological and immunological analyses were performed. The NQC-AmpB group, as compared to the control groups, presented significant reductions in the lesion size and in the parasite burden in all evaluated organs. These animals presented significantly higher levels of IFN-γ and IL-12, and low levels of IL-4 and IL-10, when compared to the control groups. The NQC-AmpB system was effective in reducing the infection in the animals, and proved to be effective in diminishing the toxicity evoked by AmpB, which was observed when it was administered alone. In conclusion, NQC-AmpB could be considered a viable possibility for future studies in the treatment of leishmaniasisThis work was supported by grants from Pró-Reitoria de Pesquisa from UFMG (Edital 01/2014), Instituto Nacional de Ciência e Tecnologia em Nano-biofarmacêutica (INCT-Nanobiofar), FAPEMIG (CBB-APQ-00496-11 and CBB-APQ-00819-12), and CNPq (APQ-472090/2011-9 and APQ-482976/2012-8). MACF is a grant recipient of FAPEMIG/CAPES. EAFC, VNC, and AAGF are grant recipients of CNPq. Eduardo AF Coelho and André AG Faraco are co-senior authors of this stud

    Integrative phylogenetic, phylogeographic and morphological characterisation of the Unio crassus species complex reveals cryptic diversity with important conservation implications

    Get PDF
    The global decline of freshwater mussels and their crucial ecological services highlight the need to understand their phylogeny, phylogeography and patterns of genetic diversity to guide conservation efforts. Such knowledge is urgently needed for Unio crassus, a highly imperilled species originally widespread throughout Europe and southwest Asia. Recent studies have resurrected several species from synonymy based on mitochondrial data, revealing U. crassus to be a complex of cryptic species. To address long-standing taxonomic uncertainties hindering effective conservation, we integrate morphometric, phylogenetic, and phylogeographic analyses to examine species diversity within the U. crassus complex across its entire range. Phylogenetic analyses were performed using cytochrome c oxidase subunit I (815 specimens from 182 populations) and, for selected specimens, whole mitogenome sequences and Anchored Hybrid Enrichment (AHE) data on ∼ 600 nuclear loci. Mito-nuclear discordance was detected, consistent with mitochondrial DNA gene flow between some species during the Pliocene and Pleistocene. Fossil-calibrated phylogenies based on AHE data support a Mediterranean origin for the U. crassus complex in the Early Miocene. The results of our integrative approach support 12 species in the group: the previously recognised Unio bruguierianus, Unio carneus, Unio crassus, Unio damascensis, Unio ionicus, Unio sesirmensis, and Unio tumidiformis, and the reinstatement of five nominal taxa: Unio desectus stat. rev., Unio gontierii stat. rev., Unio mardinensis stat. rev., Unio nanus stat. rev., and Unio vicarius stat. rev. Morphometric analyses of shell contours reveal important morphospace overlaps among these species, highlighting cryptic, but geographically structured, diversity. The distribution, taxonomy, phylogeography, and conservation of each species are succinctly described.We thank Ana-Maria Benedek, Monica Sîrbu and Jouni Leinikki for their assistance with the fieldwork, and to Jeroen Goud, Sankurie Pye, Fiona Ware, Emily Mitchell, and Aleksandra Skawina for their assistance with the taxonomic investigation. We would also like to thank the editor, Dr. Guillermo Ortí, and two anonymous reviewers for their time and effort in reviewing our manuscript and for their insightful comments and valuable improvements to our work. This publication is based upon work from COST Action CA18239: CONFREMU - Conservation of freshwater mussels: a pan-European approach, supported by COST (European Cooperation in Science and Technology), including STSMs, the interaction of the authors and the writing of the paper. This work was supported by the project ConBiomics: The Missing Approach for the Conservation of Freshwater Bivalves Project No. POCI-01-0145-FEDER-030286, co-financed by FEDER through POCI and by FCT - Fundaç˜ao para a Ciˆencia e a Tecnologia, through national funds. Strategic funding UIDB/04423/2020 and UIDP/04423/2020 was provided by FCT. FCT also supported DVG (2020.03848.CEECIND), EF (CEECINST/00027/ 2021/CP2789/CT0003) and MLL (2020.03608.CEECIND). INB, AVK and IVV were supported by the Russian Science Foundation under grants (19-14-00066-P), (21-17-00126) and (21-74-10130) respectively. BVB acknowledges the bioinformatics platform of UMR 8198 for the computing resources to perform time-calibrated phylogenetic analyses; this platform is in part funded by CPER research project CLIMIBIO through the French Minist`ere de l’Enseignement Sup´erieur et de la Recherche, the Agence Nationale de la Recherche, the European Fund for Regional Development (FEDER) and the region Hauts-de-France (HdF). Support to KD came from the Czech Science Foundation (19–05510S). TT and MT were supported by the National Science Fund of Bulgaria under the project ‘Conservation of freshwater mussels on the Balkan Peninsula’ (KP-06-COST-9/20.07.2022). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the United States Government.info:eu-repo/semantics/publishedVersio

    Background rejection in NEXT using deep neural networks

    Get PDF
    [EN] We investigate the potential of using deep learning techniques to reject background events in searches for neutrinoless double beta decay with high pressure xenon time projection chambers capable of detailed track reconstruction. The differences in the topological signatures of background and signal events can be learned by deep neural networks via training over many thousands of events. These networks can then be used to classify further events as signal or background, providing an additional background rejection factor at an acceptable loss of efficiency. The networks trained in this study performed better than previous methods developed based on the use of the same topological signatures by a factor of 1.2 to 1.6, and there is potential for further improvement.The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain and FEDER under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; GVA under grant PROMETEO/2016/120. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. JR acknowledges support from a Fulbright Junior Research Award.Renner, J.; Farbin, A.; Muñoz Vidal, J.; Benlloch-Rodríguez, J.; Botas, A.; Ferrario, P.; Gómez-Cadenas, J.... (2017). Background rejection in NEXT using deep neural networks. Journal of Instrumentation. 12. https://doi.org/10.1088/1748-0221/12/01/T01004S1
    corecore