358 research outputs found
π-Conjugation and End Group Effects in Long Cumulenes: Raman Spectroscopy and DFT Calculations
We have investigated the structure and spectroscopic properties of cumulenic carbon chains, focusing on the peculiar π-conjugation properties and end-group effects that influence their behavior. With support from Density Functional Theory (DFT) calculations, we have analyzed the IR and Raman spectra of cumulenes characterized by different end-capping groups and we have related them to the bond length alternation (BLA) pattern and local spectroscopic parameters associated with the CC bonds along the sp-carbon chain. For cumulenes we observe a breakdown of the correlation existing in polyynes among frequencies, Raman intensities of the Ʀ line (longitudinal CC stretching modes), and BLA. While the low Ʀ line frequency and equalized CC bonds would indicate the “metallic” character of cumulenic species, we obtain an unusually strong Raman intensity, which is typical of bond-alternated (semiconductive) structures. DFT calculations reveal that this is a consequence of π-electron conjugation, which markedly extends from the sp-carbon chain to the aryl rings belonging to the end groups. These findings suggest the existence of a strong electronic, vibrational and structural coupling between sp-carbon chains and sp2-carbon species, which could play a key role in nanostructured sp/sp2-hybrid carbon materials (e.g., linear carbon chains coupled to graphene domains). Within this context, Raman spectroscopy is a valuable tool for the detailed characterization of the molecular properties of this kind of materials
The Expanding Universe of Prion Diseases
Prions cause fatal and transmissible neurodegenerative disease. These etiological infectious agents are formed in greater part from a misfolded cell-surface protein called PrP(C). Several mammalian species are affected by the diseases, and in the case of “mad cow disease” (BSE) the agent has a tropism for humans, with negative consequences for agribusiness and public health. Unfortunately, the known universe of prion diseases is expanding. At least four novel prion diseases—including human diseases variant Creutzfeldt-Jakob disease (vCJD) and sporadic fatal insomnia (sFI), bovine amyloidotic spongiform encephalopathy (BASE), and Nor98 of sheep—have been identified in the last ten years, and chronic wasting disease (CWD) of North American deer (Odocoileus Specis) and Rocky Mountain elk (Cervus elaphus nelsoni) is undergoing a dramatic spread across North America. While amplification (BSE) and dissemination (CWD, commercial sourcing of cervids from the wild and movement of farmed elk) can be attributed to human activity, the origins of emergent prion diseases cannot always be laid at the door of humankind. Instead, the continued appearance of new outbreaks in the form of “sporadic” disease may be an inevitable outcome in a situation where the replicating pathogen is host-encoded
Stable and Solution-Processable Cumulenic sp-Carbon Wires: A New Paradigm for Organic Electronics
open12siAcknowledgements.
E.G.F. acknowledges the support through the EU Horizon 2020 research and innovation program, H2020-FETOPEN-01-2018-2020 (FET-Open Challenging Current Thinking), “LION-HEARTED”, grant agreement no. 828984. C.S.C. acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program ERC-Consolidator Grant (ERC CoG 2016 EspLORE grant agreement no. 724610, website: www.esplore.polimi.it). R.R.T. acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI). This work was partially supported by the European Union's H2020-EU.4.b. – Twinning of research institutions “GREENELIT”, grant agreement number 951747. GIWAXS experiments were performed at BL11 NCD-SWEET beamline at ALBA Synchrotron (Spain) with the collaboration of ALBA staff. This work was in part carried out at Polifab, the micro- and nanotechnology centre of the Politecnico di Milano.
Open access funding provided by Istituto Italiano di Tecnologia within the CRUI-CARE Agreement.Solution-processed, large-area, and flexible electronics largely relies on the excellent electronic properties of sp2-hybridized carbon molecules, either in the form of π-conjugated small molecules and polymers or graphene and carbon nanotubes. Carbon with sp-hybridization, the foundation of the elusive allotrope carbyne, offers vast opportunities for functionalized molecules in the form of linear carbon atomic wires (CAWs), with intriguing and even superior predicted electronic properties. While CAWs represent a vibrant field of research, to date, they have only been applied sparingly to molecular devices. The recent observation of the field-effect in microcrystalline cumulenes suggests their potential applications in solution-processed thin-film transistors but concerns surrounding the stability and electronic performance have precluded developments in this direction. In the present study, ideal field-effect characteristics are demonstrated for solution-processed thin films of tetraphenyl[3]cumulene, the shortest semiconducting CAW. Films are deposited through a scalable, large-area, meniscus-coating technique, providing transistors with hole mobilities in excess of 0.1 cm2V−1s−1, as well as promising operational stability under dark conditions. These results offer a solid foundation for the exploitation of a vast class of molecular semiconductors for organic electronics based on sp-hybridized carbon systems and create a previously unexplored paradigm.openPecorario S.; Scaccabarozzi A.D.; Fazzi D.; Gutierrez-Fernandez E.; Vurro V.; Maserati L.; Jiang M.; Losi T.; Sun B.; Tykwinski R.R.; Casari C.S.; Caironi M.Pecorario S.; Scaccabarozzi A.D.; Fazzi D.; Gutierrez-Fernandez E.; Vurro V.; Maserati L.; Jiang M.; Losi T.; Sun B.; Tykwinski R.R.; Casari C.S.; Caironi M
Carcinoma and multiple lymphomas in one patient: establishing the diagnoses and analyzing risk factors
Multiple malignancies may occur in the same patient, and a few reports describe cases with multiple hematologic and non-hematologic neoplasms. We report the case of a patient who showed the sequential occurrence of four different lymphoid neoplasms together with a squamous cell carcinoma of the lung. A 62-year-old man with adenopathy was admitted to the hospital, and lymph node biopsy was positive for low-grade follicular lymphoma. He achieved a partial remission with chemotherapy. Two years later, a PET-CT scan showed a left hilar mass in the lung; biopsy showed a squamous cell carcinoma. Simultaneously, he was diagnosed with diffuse large B cell lymphoma in a neck lymph node; after chemo- and radiotherapy, he achieved a complete response. A restaging PET-CT scan 2 years later revealed a retroperitoneal nodule, and biopsy again showed a low-grade follicular lymphoma, while a biopsy of a cutaneous scalp lesion showed a CD30-positive peripheral T cell lymphoma. After some months, a liver biopsy and a right cervical lymph node biopsy showed a CD30-positive peripheral T cell lymphoma consistent with anaplastic lymphoma kinase-negative anaplastic large cell lymphoma. Flow cytometry and cytogenetic and molecular genetic analysis performed at diagnosis and during the patient’s follow-up confirmed the presence of two clonally distinct B cell lymphomas, while the two T cell neoplasms were confirmed to be clonally related. We discuss the relationship between multiple neoplasms occurring in the same patient and the various possible risk factors involved in their development
Biological Designer Self-Assembling Peptide Nanofiber Scaffolds Significantly Enhance Osteoblast Proliferation, Differentiation and 3-D Migration
A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-assembling peptide scaffolds RADA16-I through direct coupling to short biologically active motifs. The motifs included osteogenic growth peptide ALK (ALKRQGRTLYGF) bone-cell secreted-signal peptide, osteopontin cell adhesion motif DGR (DGRGDSVAYG) and 2-unit RGD binding sequence PGR (PRGDSGYRGDS). We made the new peptide scaffolds by mixing the pure RAD16 and designer-peptide solutions, and we examined the molecular integration of the mixed nanofiber scaffolds using AFM. Compared to pure RAD16 scaffold, we found that these designer peptide scaffolds significantly promoted mouse pre-osteoblast MC3T3-E1 cell proliferation. Moreover, alkaline phosphatase (ALP) activity and osteocalcin secretion, which are early and late markers for osteoblastic differentiation, were also significantly increased. We demonstrated that the designer, self-assembling peptide scaffolds promoted the proliferation and osteogenic differentiation of MC3T3-E1. Under the identical culture medium condition, confocal images unequivocally demonstrated that the designer PRG peptide scaffold stimulated cell migration into the 3-D scaffold. Our results suggest that these designer peptide scaffolds may be very useful for promoting bone tissue regeneration
Waiting times for diagnosis of attention-deficit hyperactivity disorder in children and adolescents referred to Italian ADHD centers must be reduced
BACKGROUND: To investigate timely access to and the time needed to complete the diagnostic path of children and adolescents with suspected attention deficit hyperactivity disorder (ADHD) in the 18 Italian Lombardy Region ADHD reference centers. METHODS: Data of children and adolescents enrolled in the Regional ADHD disease-oriented Registry for suspected ADHD who requested their first visit in 2013-2017 were analyzed. RESULTS: The sample comprised 2262 children and adolescents aged 5-17\u2009years who accessed the ADHD centers for diagnostic classification and management. The median waiting time was of 177\u2009days (range 66-375) from the request for the initial appointment to the completion of the diagnostic path, with a three - fold difference between centers. In addition to the center, the strongest significant predictors of long waiting times were age comorbidities, the severity of the disorder, and having already completed some diagnostic procedures provided by the common standard path. CONCLUSIONS: To guarantee an equal standard of care in ADHD centers for all children and adolescents there is a pressing need to reduce the times to complete the diagnostic path. It is the task of both policymakers and each center to optimize the quality of the service and of the care delivered
Pontine tegmental cap dysplasia: developmental and cognitive outcome in three adolescent patients
Pontine Tegmental Cap Dysplasia (PTCD) is a recently described, rare disorder characterized by a peculiar cerebellar and brainstem malformation. Nineteen patients have been reported to date, of which only one in the adolescent age, and data on the clinical, cognitive and behavioural outcome of this syndrome are scarce
Recommended from our members
On the Effect of Prevalent Carbazole Homocoupling Defects on the Photovoltaic Performance of PCDTBT:PCBM Solar Cells
The photophysical properties and solar cell performance of the classical donor–acceptor copolymer PCDTBT
(poly(-9′-heptadecanyl-2,7-carbazole- -5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole))) in relation to unintentionally formed main chain defects are investigated. Carbazole–carbazole homocouplings (Cbz hc) are found to significant extent in PCDTBT made with a variety of Suzuki polycondensation conditions. Cbz hc vary between 0 and 8 mol% depending on the synthetic protocol used, and are quantified by detailed nuclear magnetic resonance spectroscopy including model compounds, which allows to establish a calibration curve from optical spectroscopy. The results are corroborated by extended time-dependent density functional theory investigations on the structural, electronic, and optical properties of regularly alternating and homocoupled chains. The photovoltaic properties of PCDTBT:fullerene blend solar cells significantly depend on the Cbz hc content for constant molecular weight, whereby an increasing amount of Cbz hc leads to strongly decreased short circuit currents J. With increasing Cbz hc content, Jdecreases more strongly than the intensity of the low energy absorption band, suggesting that small losses in absorption cannot explain the decrease in J alone, rather than combined effects of a more localized LUMO level on the TBT unit and lower hole mobilities found in highly defective samples. Homocoupling-free PCDTBT with optimized molecular weight yields the highest efficiency up to 7.2% without extensive optimization.F.L., M.S., and R.F. gratefully acknowledge the EPSRC for funding. M.S. thanks the University of Freiburg (Innovationsfond Forschung) and the DFG for funding (SPP 1355). D.F. acknowledges the Alexander von Humboldt foundation for a postdoctoral research fellowship. A.D.Z.M. and C.M. thank the Swedish Research Council for funding
The 2021 Eurpean Alliance of Associations for Rheumatology/American College of Rheumatology points to consider for diagnosis and management of autoinflammatory type i interferonopathies: CANDLE/PRAAS, SAVI and AGS
Objective: Autoinflammatory type I interferonopathies, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndrome (CANDLE/PRAAS), stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI) and Aicardi-Goutières syndrome (AGS) are rare and clinically complex immunodysregulatory diseases. With emerging knowledge of genetic causes and targeted treatments, a Task Force was charged with the development of \u27points to consider\u27 to improve diagnosis, treatment and long-term monitoring of patients with these rare diseases. Methods: Members of a Task Force consisting of rheumatologists, neurologists, an immunologist, geneticists, patient advocates and an allied healthcare professional formulated research questions for a systematic literature review. Then, based on literature, Delphi questionnaires and consensus methodology, \u27points to consider\u27 to guide patient management were developed. Results: The Task Force devised consensus and evidence-based guidance of 4 overarching principles and 17 points to consider regarding the diagnosis, treatment and long-term monitoring of patients with the autoinflammatory interferonopathies, CANDLE/PRAAS, SAVI and AGS. Conclusion: These points to consider represent state-of-the-art knowledge to guide diagnostic evaluation, treatment and management of patients with CANDLE/PRAAS, SAVI and AGS and aim to standardise and improve care, quality of life and disease outcomes
The 2021 EULAR and ACR points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS, SAVI and AGS
Objective: Autoinflammatory type I interferonopathies, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndrome (CANDLE/PRAAS), stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI) and Aicardi-Goutières syndrome (AGS) are rare and clinically complex immunodysregulatory diseases. With emerging knowledge of genetic causes and targeted treatments, a Task Force was charged with the development of 'points to consider' to improve diagnosis, treatment and long-term monitoring of patients with these rare diseases. Methods: Members of a Task Force consisting of rheumatologists, neurologists, an immunologist, geneticists, patient advocates and an allied healthcare professional formulated research questions for a systematic literature review. Then, based on literature, Delphi questionnaires and consensus methodology, 'points to consider' to guide patient management were developed. Results: The Task Force devised consensus and evidence-based guidance of 4 overarching principles and 17 points to consider regarding the diagnosis, treatment and long-term monitoring of patients with the autoinflammatory interferonopathies, CANDLE/PRAAS, SAVI and AGS. Conclusion: These points to consider represent state-of-the-art knowledge to guide diagnostic evaluation, treatment and management of patients with CANDLE/PRAAS, SAVI and AGS and aim to standardise and improve care, quality of life and disease outcomes
- …