35 research outputs found

    Phenolic nature, occurrence and polymerization degree as marker of environmental adaptation in the edible halophyte Mesembryanthemum edule

    Get PDF
    AbstractMesembryanthemum edule is an edible medicinal halophyte traditionally used to treat several human diseases. In this study, particular importance was attached to the influence of environmental conditions on phenolic composition and antioxidant activities of two M. edule provenances from contrasting climatic regions (Djerba and Monastir sampled from arid and superior semi-arid bioclimatic stages, respectively). Shoot phenolic content was evaluated using colorimetric method and its composition was identified by HPLC analysis with or without thiolysis. Antioxidant activities were assessed by five in vitro antioxidant systems. Results showed that the two M. edule provenances were significantly different according to their antioxidant activity as well as their polyphenol profiles. Indeed, plants from Djerba (lack of rainfall and long light hour periods) exhibited stronger antioxidant activity together with higher phenolic content. For instance, Djerba provenance shoots showed much lower IC50 (4.8μgml−1) and EC50 (80μgml−1) values for DPPH and Fe-reducing tests, respectively. In addition, the superiority of this provenance (Djerba) was more marked as compared to positive controls (BHT, BHA, and VitC). HPLC identification revealed also an important difference between the two provenances on major flavonoid components. This difference was confirmed by the mean degrees of tannin polymerization (DPn) which was higher in Djerba plants. These data suggest that M. edule adaptation to environmental stresses proceeds through induced particular phenol quality and DPn for the improvement of their antioxidant capacities to protect plant tissues against oxidative stress

    LC-MS PHENOLIC COMPOSITION CHANGES AND ANTIOXIDANT CAPACITIES OF THE SAHARAN TREE ARGANIA SPINOSA LEAVES UNDER SALNITY

    Get PDF
    Adaptation of many plant species to hostile environmental conditions suggest the presence of powerful antioxidative constituents in their tissues such as phenolic compounds. Many works on antioxidant activity of the Moroccan argan oil have been carried out. However, it is the first time that salt impact on Algerian arganleaves is assessed. The main objective of this work was to study the soil salinity impact on phenolic content and composition, and the antioxidant activities of the argan leaves collected from three point in the same site of Tindouf region (Algeria) characterized by a gradient of salt concentration (Lightly Salt Tindouf, Salt Tindouf and Very Salt Tindouf). Variability of phenolic contents, antioxidant and free radical-scavenging activities of the argan leaves as function of salt soil concentration were evaluated. Identification was done by LC-MS system. Regarding phenolic contents (total polyphenol, flavonoid and condensed tannin), the Salt Tindouf leaves displayed the highest amounts (total polyphenol = 77.28 mg GAE/g DW). Moreover, the same tendency was observed for antioxidant activities, for instance, total antioxidant activity of leaves from Salt Tindouf was the highest (83.6 mg GAE/g DW). In addition, leaves from Salt Tindouf displayed the highest scavenging activity against DPPH radical (IC50 = 6.5 μg/ml) as compared to the two others points. These results were also confirmed by LC-MS analyses. Leaves synthesize more compounds with very important biological activities under salinity which allow them to be valorized in different fields, such as pharmacology and agro-food industries

    Effects of thymbra capitate essential oil on in vitro fermentation end-products and ruminal bacterial communities

    Get PDF
    13 páginas, 5 figuras, 3 tablas.An in vitro trial was carried out to investigate the effects of natural Thymbra capitata essential oil (NEO) and its main compounds [including carvacrol, p-cymene, γ-terpinene given alone or in a synthetic combination (SEO)] on ruminal fermentation and the bacterial community using batch cultures inoculated with ruminal digesta and incubating two different basal diets [high-forage (F) and high-concentrate (C) diet]. After 24 h of incubation, primary fermentation end-products [gas, methane, volatile fatty acids (VFAs) and ammonia] and rumen microbial diversity were determined. NEO reduced the total VFA concentration (P  0.05) by any of the experimental treatments or diets evaluated. Microbial diversity analysis showed only a moderate effect of carvacrol and SEO on 13 genera, including, mainly, Atopobium and Blautia (involved in subacute ruminal acidosis) or Candidatus Saccharimonas (related to laminitis). In conclusion, T. capitata EO has a limited potential to attain nutritional or environmental benefits, but further research should be carried out to clarify its effects on animal health and microbial food safety.Tis work was funded by CSIC (Proyectos Intramurales Especiales, 201940E115) and MUR (Direzione Generale dell’internazionalizzazione e della comunicazione Programma cooperazione internazionale PRIMA—Decreto Ministeriale 26 luglio 2016 n. 593) in the context of the MILKQUA-H2020-PRIMA 2018—Section 2. Alba Martín gratefully acknowledges receipt of a pre-doctoral grant (PRE2019-089288) from Ministerio de Ciencia e Innovación (MCIN/AEI/10.13039/501100011033, "El FSE invierte en tu futuro").Peer reviewe

    Biochemical profile and in vitro neuroprotective properties of Carpobrotus edulis L., a medicinal and edible halophyte native to the coast of South Africa

    Get PDF
    This work reports the nutritional profile and in vitro neuroprotective properties of leaves of Carpobrotus edulis L, a medicinal and edible succulent species native to the coast of South Africa. Biomass was evaluated for proximate composition and for contents in carotenoids, liposoluble pigments and minerals. Hexane, dichloromethane, ethyl acetate and methanol extracts were prepared by Soxhlet extraction from dried biomass and evaluated for in vitro inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), capacity to attenuate hydrogen peroxide (H2O2)-induced injury in the human dopaminergic cell line SH-SY5Y and for anti-neuroinflammatory potential on lipopolysaccharide (LPS)-stimulated microglia cells. Extracts were evaluated for antioxidant activity by four complementary methods, total content of phenolics, tannins and flavonoids. Finally the profile of the main phenolic compounds was determined by high performance liquid chromatography with diode array detection (HPLC-DAD). C edulis has a high moisture content, high levels of crude protein, fibre, ash, carotenoids, calcium and iron and a low fat level. The extracts were able to efficiently scavenge the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), reduce iron and chelate copper and iron ions, and exhibited different levels of phenolic compounds in the order ethyl acetate > methanol > dichloromethane > hexane. The main compounds detected were gallic and salicylic acids and quercetin, all in the ethyl acetate extract. The extracts allowed a dual and potent inhibition of AChE and BuChE. The dichloromethane and methanol extracts had the strongest capacity to prevent cell death induced by H2O2, and the methanol extract had anti-neuronflammatory properties. All together our results suggest that consumption of leaves of C edulis can contribute for a balanced diet, and that they may add to the improvement of cognitive functions. It also suggests possible novel biotechnological applications of C. edulis such as source of molecules and/or products for the food and/or pharmaceutical industries. Studies aiming to the isolation and identification of the bioactive compounds are already in progress. (C) 2017 SAAB. Published by Elsevier B.V. All rights reserved.Portuguese National BudgetXtremeGourmet project [ALG-01-0247-FEDER-017676]FCT Investigator Programme [IF/00049/2012]info:eu-repo/semantics/publishedVersio

    Antioxidant, Anti-inflammatory and Cytotoxicity of Phaleria macrocarpa (Boerl.) Scheff Fruit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Phaleria macrocarpa </it>(Scheff.) Boerl (Thymelaceae) originates from Papua Island, Indonesia and grows in tropical areas. The different parts of the fruit of <it>P. macrocarpa </it>were evaluated for antioxidant, anti-inflammatory, and cytotoxic activities.</p> <p>Methods</p> <p><it>Phaleria macrocarpa </it>fruit were divided into pericarp, mesocarp and seed. All parts of the fruit were reflux extracted with methanol. The antioxidant activity of the extracts were characterized in various <it>in vitro </it>model systems such as FTC, TBA, DPPH radical, reducing power and NO radical. Anti-inflammatory assays were done by using NO production by macrophage RAW 264.7 cell lines induced by LPS/IFN-γ and cytotoxic activities were determined by using several cancer cell lines and one normal cell line</p> <p>Results</p> <p>The results showed that different parts (pericarp, mesocarp, and seed) of <it>Phaleria macrocarpa </it>fruit contain various amount of total phenolic (59.2 ± 0.04, 60.5 ± 0.17, 47.7 ± 1.04 mg gallic acid equivalent/g DW) and flavonoid compounds (161.3 ± 1.58, 131.7 ± 1.66, 35.9 ± 2.47 mg rutin equivalent/g DW). Pericarp and mesocarp showed high antioxidant activities by using DPPH (71.97%, 62.41%), ferric reducing antioxidant power (92.35%, 78.78%) and NO scavenging activity (65.68%, 53.45%). Ferric thiocyanate and thiobarbituric acid tests showed appreciable antioxidant activity in the percentage hydroperoxides inhibitory activity from pericarp and mesocarp in the last day of the assay. Similarly, the pericarp and mesocarp inhibited inducible nitric oxide synthesis with values of 63.4 ± 1.4% and 69.5 ± 1.4% in macrophage RAW 264.7 cell lines induced by LPS/IFN-γ indicating their notable anti-inflammatory potential. Cytotoxic activities against HT-29, MCF-7, HeLa and Chang cell lines were observed in all parts.</p> <p>Conclusions</p> <p>These results indicated the possible application of <it>P. macrocarpa </it>fruit as a source of bioactive compounds, potent as an antioxidant, anti inflammatory and cytotoxic agents.</p

    Chemical Composition, Antibacterial and Antifungal Activities of Four Essential Oils Collected in the North-East of Tunisia

    No full text
    This work aimed to determine the essential oil composition and their biological activities of four local medicinal plant species (Pinus halepensis, Tetraclinis articulata, Juniperus phoenicea and Juniperus oxycedrus) widely planted in the same geographical site. Essential oil isolation was isolated using hydrodistillation and the chemical composition was based on GC/MS analysis. The antibacterial and antifungal activities of essential oils were assessed against 8 pathogenic bacteria and 4 yeast, and 3 different tests were used. GC/MS results showed that essential oil chemical composition is highly affected by plant species (P&lt;0.001). GC/MS identification revealed that β-phellandrene (21.8%), β-caryophyllene (37.2%), α-pinene (24.7%) and camphor (22.4%) were identified as the major compounds of J. phoenicea, P. halepensis, J. oxycedrus and T. articulata essential oils, respectively. Interestingly, two volatile compounds: β-pinene and p-cymen-8-ol were present in all isolated essential oils with similar concentrations: 0.8 and 0.5% of the total identified componenents. Antibacterial results suggested that essential oils were efficient in arresting the growth of most tested bacteria with different extent depending on the studied plant and bacterial strains. Interestingly, Pseudomonas aeruginosa was the most resistant bacterium and Shigella sonnei was the most sensible to tested essential oils. Indeed, the lowest and the highest inhibition diameters were recorded for latter bacterial strains, respectively. Concerning the antifungal activity, results showed interesting efficiency against tested Candida strains. The most susceptible yeast was Candida glabrata, and the most resistant strain was Candida krusei, as the inhibition zone diameter generated by tested essential oils were the lowest and were limited to 13 mm (J. oxycedrus

    Polyphenol content and biological activities of Mesembryanthemum edule organs after fractionation

    No full text
    International audienceMesembryanthemum edule (Aizoaceae) is an edible halophyte widely used as a traditional remedy against fungal and bacterial infections. This study investigates phenolic contents and biological activities of aqueous methanolic fractions (methanol/acidified water, v/v: 20/80, 40/60 and 60/40) of M. edule leaves, stems and roots. The most phenol-rich fractions were leaf 20%, stem 60%, and root 40% (from 671 to 989 mg GAE g−1 DR). The highest ferric reducing power was found in leaf 40% and stem 40% (86 and 94 μg ml−1, respectively) whereas the highest total antioxidant activity was noted in root 40% (395 mg GAE g−1 DR). Concerning the antimicrobial activity, organ extracts were assayed for their activity against food borne bacteria and fungi. The inhibitory percentages ranged from 0 to 94%. Stems showed the strongest antibacterial activity (inhibition of the growth in 6 of the 7 strains tested) especially against Micrococcus luteus (82%) followed by leaves and roots. Regarding fraction polarity, 60% and 20% aqueous methanolic fractions were the most and the less active fractions, respectively. All the organ fractions showed a high antifungal activity, notably against Kloeckera apiculata (85% for leaf 40%) and Candida albicans (77% for stem 40%). Even more, leaf, stem and root fractions were very potent in inhibiting growth of filamentous fungi, with inhibition percentages varying between 23% and 99%. Overall, the fractionation process enabled a better assessment of M. edule antioxidant and antimicrobial activities, which were attributed to various metabolites with different polarities. Our findings also indicate that M. edule organs could be used as a potent source of natural antioxidants and antibiotics
    corecore