583 research outputs found

    Cisticercose Bovina no Estado do Espírito Santo no Período de 2009 a 2012: Análise de Registros de Matadouros Frigoríficos

    Get PDF
    A cisticercose bovina é uma das zoonoses mais encontradas na inspeção post mortem dos bovinos abatidos no Brasil, transmitida ao homem pela ingestão de carne crua ou mal cozida contendo cistos viáveis. O objetivo do presente trabalho foi realizar análise de registros de cisticercose bovina nos matadouros frigoríficos do Estado do Espírito Santo no período de 2009 a 2012. Os dados referentes às condenações de carcaça e órgãos foram obtidos a partir dos registros do órgão de serviço de inspeção federal (SIF) e estadual (SIE) do estado do ES. Foram abatidos um total de 1.340.751 bovinos no período estudado e uma prevalência média de 0,84%. Nos dados registrados no SIF a prevalência média foi de 0,87% e as regiões anatômicas acometidas foram coração, língua, cabeça e fígado, respectivamente. Nos dados do SIE, a prevalência foi de 0,83% e os órgãos mais acometidos foram coração, cabeça, fígado e língua, respectivamente. Em todos os anos o número total de cistos vivos foi maior do que o número de cistos calcificados. As perdas por cisticercose no período foram de R$ 9.092.834,97, para 1.518.256,8 Kg de carne condenada. Os casos de cisticercose aumentaram entre os anos de 2010, 2011 e 2012 (p<0,001), mostrando uma tendência crescente da enfermidade e houve diferença significativa entre as estações do ano (p=0,01), com a estação chuvosa apresentando um número maior de casos de cisticercose. Um questionário sobre diagnóstico para cisticercose foi oferecido aos executores de inspeção, em um dos matadouros no sul do estado, e constatou incapacidade de diferenciar cisticercose da hidatidose

    Human exonuclease 1 role in response to UV irradiation

    Get PDF
    DNA damage checkpoints are surveillance mechanisms that monitor the integrity of the genome. Nucleotide excision repair (NER) is a DNA repair mechanism that cells use to remove UV-induced DNA lesions. Previous publication from our laboratory demonstrated that recognition and processing of UV-induced damage by NER is required for proper activation of checkpoint through interactions between NER proteins and checkpoint factors in yeast and human primary fibroblasts. From a two hybrid screening in yeast exonuclease 1 (Exo1) was identified as a 9-1-1 complex interactor. Exo1 is a 5\u2019-3\u2019 exonuclease and 5'-flap-endonuclease with many different roles in DNA metabolism such as meiotic and mitotic recombination, mismatch repair and telomere processing. Characterization of an exo1 yeast deleted strain has shown that this protein is involved in the early steps of UV-induced DNA damage checkpoint. In human cells EXO1 is present as two isoforms named hEXO1a and hEXO1b genetarated by alternative splicing. We are analyzing the role of EXO1 in checkpoint activation in response to UV-C damage in human cells: using siRNA against both a and b isoform of hEXO1 in G1 cells we were able to observe a defect in Chk1 and p53 phosphorylation induced by UV-C irradiation

    Design of an Efficient Pumping Scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF Fiber Laser

    Get PDF
    This letter illustrates the design of a novel medium infrared (Mid-IR) laser based on a photonic crystal fiber made of dysprosium-doped chalcogenide glass, Dy3+:Ga5Ge20Sb10S65. In order to perform a realistic investigation, the simulation is performed by taking into account the spectroscopic parameters measured on the rare earth-doped glass sample. The simulated results show that an optical beam emission close to 4400-nm wavelength can be obtained by employing two pump beams at 2850 nm (pump #1) and 4092 nm (pump #2) wavelengths. The pump beams can be provided by commercial quantum cascade lasers. As example, for the pump powers of 50 mW (pump #1) and 1 W (pump #2), the input mirror reflectivity of 99%, the output mirror reflectivity of 30%, and the optical cavity length of 50 cm, a signal power close to 350 mW at the wavelength of 4384 nm can be generated. This result indicates that the designed source configuration is feasible for high beam quality Mid-IR light generation and it is efficient enough to find applications in optical free propagation links, optical remote sensing, and medicine

    Design of a Multi-Wavelength Fiber Laser Based on Tm:Er:Yb:Ho Co-Doped Germanate Glass

    Get PDF
    In this article, for the first time, an efficient multi-wavelength fiber laser based on a Tm:Er:Yb:Ho co-doped germanate glass, optically pumped at 980 nm wavelength and simultaneously emitting at 1550 nm, 1800 nm and 2050 nm wavelengths, is designed and optimized. An exhaustive model, taking into account the energy transfer phenomena between different rare earths, is developed. The device behavior is investigated by means of several parametric sweeps with respect to the input pump power, the fiber length, the dopant concentrations and the output mirrors reflectivities. Four optimal concentrations have been found by means of a home-made computer code based on particle swarm optimization (PSO) approach, allowing a global solution search. These concentrations allow levels of output powers very close to each other, equal to 20 mW pmpm 0.1% at 1550 nm, 1800 nm and 2050 nm, respectively. These results predict the possibility of tailoring the dopant concentrations in order to construct broadband optical sources with similar emission powers at multiple wavelengths and broadband amplifiers

    Design of an Efficient Pumping Scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65PCF Fiber Laser

    Get PDF
    This letter illustrates the design of a novel medium infrared (Mid-IR) laser based on a photonic crystal fiber made of dysprosium-doped chalcogenide glass, Dy3+:Ga5Ge20Sb10S65. In order to perform a realistic investigation, the simulation is performed by taking into account the spectroscopic parameters measured on the rare earth-doped glass sample. The simulated results show that an optical beam emission close to 4400-nm wavelength can be obtained by employing two pump beams at 2850 nm (pump #1) and 4092 nm (pump #2) wavelengths. As example, for the pump powers of 50 mW (pump #1) and 1 W (pump #2), the input mirror reflectivity of 99%, the output mirror reflectivity of 30%, and the optical cavity length of 50 cm, a signal power close to 350 mW at the wavelength of 4384 nm can be generated. This result indicates that the designed source configuration is feasible for high beam quality Mid-IR light generation and it is efficient enough to find applications in optical free propagation links, optical remote sensing, and medicine

    Dysprosium-doped chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR emission

    Get PDF
    The paper describes the design of a medium infrared fiber laser based on a dysprosium-doped chalcogenide glass Dy3+: Ga5Ge20Sb10S65. To obtain a high efficiency, the fiber laser is followed by an optical amplifier. The optimized optical source exploits a master oscillator power amplifier (MOPA) configuration. The MOPA pump and signal wavelengths are 1709 and 4384 nm, respectively. Spectroscopic parameters measured on preliminary samples of chalcogenide glasses are taken into account to fulfill realistic simulations. The MOPA emission is maximized by applying a particle swarm optimization approach. For the dysprosium concentration 6, ×, 1025 ions/m3 and the input pump power of 3 W, an output power of 637 mW can be obtained for optical fiber losses close to 1 dB m-1. The optimized MOPA configuration allows a laser efficiency larger than 21%. By considering the high beam quality provided by photonic crystal fibers, it is a good candidate for medium infrared light generation whose main applications include, but are not limited to, molecular spectroscopy and environmental monitoring

    Snowfall retrieval at X, Ka and W bands : consistency of backscattering and microphysical properties using BAECC ground-based measurements

    Get PDF
    Radar-based snowfall intensity retrieval is investigated at centimeter and millimeter wavelengths using co-located ground-based multi-frequency radar and video-disdrometer observations. Using data from four snowfall events, recorded during the Biogenic Aerosols Effects on Clouds and Climate (BAECC) campaign in Finland, measurements of liquid-water-equivalent snowfall rate S are correlated to radar equivalent reflectivity factors Z(e), measured by the Atmospheric Radiation Measurement (ARM) cloud radars operating at X, Ka and W frequency bands. From these combined observations, power-law Z(e)-S relationships are derived for all three frequencies considering the influence of riming Using microwave radiometer observations of liquid water path, the measured precipitation is divided into lightly, moderately and heavily rimed snow. Interestingly lightly rimed snow events show a spectrally distinct signature of Z(e)-S with respect to moderately or heavily rimed snow cases. In order to understand the connection between snowflake microphysical and multi-frequency backscattering properties, numerical simulations are performed by using the particle size distribution provided by the in situ video disdrometer and retrieved ice particle masses. The latter are carried out by using both the T-matrix method (TMM) applied to soft-spheroid particle models with different aspect ratios and exploiting a pre-computed discrete dipole approximation (DDA) database for rimed aggregates. Based on the presented results, it is concluded that the soft-spheroid approximation can be adopted to explain the observed multifrequency Z(e)-S relations if a proper spheroid aspect ratio is selected. The latter may depend on the degree of riming in snowfall. A further analysis of the backscattering simulations reveals that TMM cross sections are higher than the DDA ones for small ice particles, but lower for larger particles. The differences of computed cross sections for larger and smaller particles are compensating for each other. This may explain why the soft-spheroid approximation is satisfactory for radar reflectivity simulations under study.Peer reviewe

    Novel pumping schemes of Mid-IR photonic crystal fiber lasers for aerospace applications

    Get PDF
    The paper illustrates the design of two pumping schemes for Mid-IR lasers based on photonic crystal fibers (PCFs) made of dysprosium doped chalcogenide glass Dy3+:Ga5Ge20Sb10S65. The simulation is performed by taking into account the spectroscopic parameters measured on the rare earth-doped glass sample in order to perform a realistic feasibility investigation. The first pump scheme provides an optical beam emission close to 4400 nm wavelength by employing two pump beams at the wavelengths close to 2800 nm and 4100 nm, respectively. The second pump scheme allows beam emission close to 4400 nm wavelength via a 1700 nm pump, its efficiency is increased by including a suitable optical amplifier after the laser cavity. The proposed light sources based on chalcogenide glass photonic crystal fibers (PCFs) doped with Dy3+ ions are investigated via a home-made numerical model based on the coupled mode theory and solving the rare earth rate equations. A number of promising applications in different areas such as satellite remote sensing and aerospace, biology, molecular spectroscopy and environmental monitoring are feasible

    Comparative modeling of infrared fiber lasers

    Get PDF
    The modeling and design of fiber lasers facilitate the process of their practical realization. Of particular interest during the last few years is the development of lanthanide ion-doped fiber lasers that operate at wavelengths exceeding 2000 nm. There are two main host glass materials considered for this purpose, namely fluoride and chalcogenide glasses. Therefore, this study concerned comparative modeling of fiber lasers operating within the infrared wavelength region beyond 2000 nm. In particular, the convergence properties of selected algorithms, implemented within various software environments, were studied with a specific focus on the central processing unit (CPU) time and calculation residual. Two representative fiber laser cavities were considered: One was based on a chalcogenide-selenide glass step-index fiber doped with trivalent dysprosium ions, whereas the other was a fluoride step-index fiber doped with trivalent erbium ions. The practical calculation accuracy was also assessed by comparing directly the results obtained from the different models
    • …
    corecore