136 research outputs found

    Structural variants exhibit widespread allelic heterogeneity and shape variation in complex traits

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.It has been hypothesized that individually-rare hidden structural variants (SVs) could account for a significant fraction of variation in complex traits. Here we identified more than 20,000 euchromatic SVs from 14 Drosophila melanogaster genome assemblies, of which ~40% are invisible to high specificity short-read genotyping approaches. SVs are common, with 31.5% of diploid individuals harboring a SV in genes larger than 5kb, and 24% harboring multiple SVs in genes larger than 10kb. SV minor allele frequencies are rarer than amino acid polymorphisms, suggesting that SVs are more deleterious. We show that a number of functionally important genes harbor previously hidden structural variants likely to affect complex phenotypes. Furthermore, SVs are overrepresented in candidate genes associated with quantitative trait loci mapped using the Drosophila Synthetic Population Resource. We conclude that SVs are ubiquitous, frequently constitute a heterogeneous allelic series, and can act as rare alleles of large effect

    Transcriptome profiling of ontogeny in the acridid grasshopper Chorthippus biguttulus

    Get PDF
    Acridid grasshoppers (Orthoptera:Acrididae) are widely used model organisms for developmental, evolutionary, and neurobiological research. Although there has been recent influx of orthopteran transcriptomic resources, many use pooled ontogenetic stages obscuring information about changes in gene expression during development. Here we developed a de novo transcriptome spanning 7 stages in the life cycle of the acridid grasshopper Chorthippus biguttulus. Samples from different stages encompassing embryonic development through adults were used for transcriptomic profiling, revealing patterns of differential gene expression that highlight processes in the different life stages. These patterns were validated with semi-quantitative RT-PCR. Embryonic development showed a strongly differentiated expression pattern compared to all of the other stages and genes upregulated in this stage were involved in signaling, cellular differentiation, and organ development. Our study is one of the first to examine gene expression during post-embryonic development in a hemimetabolous insect and we found that only the fourth and fifth instars had clusters of genes upregulated during these stages. These genes are involved in various processes ranging from synthesis of biogenic amines to chitin binding. These observations indicate that post-embryonic ontogeny is not a continuous process and that some instars are differentiated. Finally, genes upregulated in the imago were generally involved in aging and immunity. Our study highlights the importance of looking at ontogeny as a whole and indicates promising directions for future research in orthopteran development

    The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins

    Get PDF
    Snakebite envenoming is a serious and neglected tropical disease that kills ~100,000 people annually. High-quality, genome-enabled comprehensive characterization of toxin genes will facilitate development of effective humanized recombinant antivenom. We report a de novo near-chromosomal genome assembly of Naja naja, the Indian cobra, a highly venomous, medically important snake. Our assembly has a scaffold N50 of 223.35 Mb, with 19 scaffolds containing 95% of the genome. Of the 23,248 predicted protein-coding genes, 12,346 venom-gland-expressed genes constitute the \u27venom-ome\u27 and this included 139 genes from 33 toxin families. Among the 139 toxin genes were 19 \u27venom-ome-specific toxins\u27 (VSTs) that showed venom-gland-specific expression, and these probably encode the minimal core venom effector proteins. Synthetic venom reconstituted through recombinant VST expression will aid in the rapid development of safe and effective synthetic antivenom. Additionally, our genome could serve as a reference for snake genomes, support evolutionary studies and enable venom-driven drug discovery

    A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system

    Get PDF
    Over the past few decades, several plant species, including Arabidopsis thaliana, Brachypodium distachyon and rice (Oryza sativa), have been adopted as model plants for various aspects of research. These species, especially Arabidopsis, have had vital roles in making fundamental discoveries and technological advances 1. However, all these model plants use C 3 photosynthe-sis, and discoveries made in these species are not always transferable to, or representative of, C 4 plants such as maize (Zea mays), sor-ghum (Sorghum bicolor) and millets, which are efficient fixers of atmospheric CO 2 into biomass. Thus, it is critical to develop a new model system for studies in these and many other C 4 plants 2. Foxtail millet (S. italica) is a cereal crop that was domesticated from its wild ancestor, green foxtail (Setaria viridis). These two species are evolutionarily close to several bioenergy crops, including switchgrass (Panicum virgatum), napiergrass (Pennisetum purpu-reum) and pearl millet (Pennisetum glaucum), and major cereals such as sorghum, maize and rice 3. In addition, extensive genetic diversity exists in Setaria, with approximately 30,000 accessions preserved in China, India, Japan and the United States 3 as valuable resources for gene-function dissection and elite-allele mining 4. In recent years, the whole-genome sequences of foxtail millet and green foxtail have been made available 5-9 , and both species have been proposed as C 4 model plant systems 3,6. Between these two species, foxtail millet is more suitable as a model plant due to the seed shattering and dor-mancy in green foxtail. Nevertheless, the relatively long life cycle (usually 4-5 months per generation) and large plant size (1-2 m in height) limit the use of foxtail millet as a model plant 3,10-12. To overcome such limitations, we have recently developed a large fox-tail millet ethyl methane sulfonate (EMS)-mutagenized population using Jingu21, a high-yield, high-grain-quality elite variety widely grown in north China in the past few decades. From the mutant population, we identified a miniature mutant (dubbed xiaomi) with a life cycle similar to that of Arabidopsis. Subsequently, we developed genomics and transcriptomics resources and a protocol for efficient transformation of xiaomi, as essential parts of the toolbox for the research community

    A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance

    Get PDF
    The codling moth Cydia pomonella, a major invasive pest of pome fruit, has spread around the globe in the last half century. We generated a chromosome-level scaffold assembly including the Z chromosome and a portion of the W chromosome. This assembly reveals the duplication of an olfactory receptor gene (OR3), which we demonstrate enhances the ability of C. pomonella to exploit kairomones and pheromones in locating both host plants and mates. Genome-wide association studies contrasting insecticide-resistant and susceptible strains identify hundreds of single nucleotide polymorphisms (SNPs) potentially associated with insecticide resistance, including three SNPs found in the promoter of CYP6B2. RNAi knockdown of CYP6B2 increases C. pomonella sensitivity to two insecticides, deltamethrin and azinphos methyl. The high-quality genome assembly of C. pomonella informs the genetic basis of its invasiveness, suggesting the codling moth has distinctive capabilities and adaptive potential that may explain its worldwide expansion

    Comparative genomics of the tardigrades <i>Hypsibius dujardini</i> and <i>Ramazzottius varieornatus</i>

    Get PDF
    Tardigrada, a phylum of meiofaunal organisms, have been at the center of discussions of the evolution of Metazoa, the biology of survival in extreme environments, and the role of horizontal gene transfer in animal evolution. Tardigrada are placed as sisters to Arthropoda and Onychophora (velvet worms) in the superphylum Panarthropoda by morphological analyses, but many molecular phylogenies fail to recover this relationship. This tension between molecular and morphological understanding may be very revealing of the mode and patterns of evolution of major groups. Limnoterrestrial tardigrades display extreme cryptobiotic abilities, including anhydrobiosis and cryobiosis, as do bdelloid rotifers, nematodes, and other animals of the water film. These extremophile behaviors challenge understanding of normal, aqueous physiology: how does a multicellular organism avoid lethal cellular collapse in the absence of liquid water? Meiofaunal species have been reported to have elevated levels of horizontal gene transfer (HGT) events, but how important this is in evolution, and particularly in the evolution of extremophile physiology, is unclear. To address these questions, we resequenced and reassembled the genome of H. dujardini, a limnoterrestrial tardigrade that can undergo anhydrobiosis only after extensive pre-exposure to drying conditions, and compared it to the genome of R. varieornatus, a related species with tolerance to rapid desiccation. The 2 species had contrasting gene expression responses to anhydrobiosis, with major transcriptional change in H. dujardini but limited regulation in R. varieornatus. We identified few horizontally transferred genes, but some of these were shown to be involved in entry into anhydrobiosis. Whole-genome molecular phylogenies supported a Tardigrada+Nematoda relationship over Tardigrada+Arthropoda, but rare genomic changes tended to support Tardigrada+Arthropoda
    • 

    corecore