64 research outputs found

    Dysregulation of MicroRNA-34a Expression in Head and Neck Squamous Cell Carcinoma Promotes Tumor Growth and Tumor Angiogenesis

    Get PDF
    MicroRNAs (miRs) are small non-coding RNAs that play an important role in cancer development where they can act as oncogenes or as tumor-suppressors. miR-34a is a tumor-suppressor that is frequently downregulated in a number of tumor types. However, little is known about the role of miR-34a in head and neck squamous cell carcinoma (HNSCC).miR-34a expression in tumor samples, HNSCC cell lines and endothelial cells was examined by real time PCR. Lipofectamine-2000 was used to transfect miR-34a in HNSCC cell lines and human endothelial cells. Cell-proliferation, migration and clonogenic survival was examined by MTT, Xcelligence system, scratch assay and colony formation assay. miR-34a effect on tumor growth and tumor angiogenesis was examined by in vivo SCID mouse xenograft model. Our results demonstrate that miR-34a is significantly downregulated in HNSCC tumors and cell lines. Ectopic expression of miR-34a in HNSCC cell lines significantly inhibited tumor cell proliferation, colony formation and migration. miR-34a overexpression also markedly downregulated E2F3 and survivin levels. Rescue experiments using microRNA resistant E2F3 isoforms suggest that miR-34a-mediated inhibition of cell proliferation and colony formation is predominantly mediated by E2F3a isoform. In addition, tumor samples from HNSCC patients showed an inverse relationship between miR-34a and survivin as well as miR-34a and E2F3 levels. Overexpression of E2F3a completely rescued survivin expression in miR-34a expressing cells, thereby suggesting that miR-34a may be regulating survivin expression via E2F3a. Ectopic expression of miR-34a also significantly inhibited tumor growth and tumor angiogenesis in a SCID mouse xenograft model. Interestingly, miR-34a inhibited tumor angiogenesis by blocking VEGF production by tumor cells as well as directly inhibiting endothelial cell functions.Taken together, these findings suggest that dysregulation of miR-34a expression is common in HNSCC and modulation of miR34a activity might represent a novel therapeutic strategy for the treatment of HNSCC

    Expression of survivin, a novel inhibitor of apoptosis and cell cycle regulatory protein, in pancreatic adenocarcinoma

    Get PDF
    Survivin is unique for its expression in human malignancies but not in normal adult cells. It has been implicated in sensitisation to chemotherapy and as a prognostic marker in several common cancers. Immunohistochemistry for Survivin, P53 and BCL-2 expression as well as cell proliferative index (Ki-67) and apoptosis index (TUNEL) was conducted on 52 pancreatic and 12 ampullary adenocarcinomas. Survivin was detected in the cytoplasm of carcinoma cells in 46 (88%) of pancreatic tumours. P53 and BCL-2 were detected in 54% and 12% of pancreatic tumours, respectively. Proliferative index was 26.2±10.5% and apoptosis index was 1.38±0.69%. Prevalence of Survivin expression was significantly higher in P53-positive than in P53-negative cases (P=0.05) but was not associated with BCL-2 expression. Incrementally higher weighted scores of Survivin expression were associated with increased proliferative index (P=0.001). Furthermore, there was linear correlation between increased proliferative index and higher apoptosis index (P<0.001). Surprisingly, higher scores of Survivin expression were associated with increased apoptosis index (P=0.007). Survival characteristics were not influenced by Survivin, P53 or BCL-2 expression, apoptosis index or proliferative index. Ampullary carcinoma showed Survivin expression in 83% of cases. However, unlike pancreatic carcinoma, there was no correlation between Survivin and P53 expression or proliferative index. In conclusion, Survivin is expressed in the majority of pancreatic adenocarcinomas and correlates with both cellular proliferation and apoptosis. Molecular manipulation of Survivin expression may enhance chemotherapy and radiation therapy for pancreatic cancer

    The Utilization of Aquatic Bushmeat from Small Cetaceans and Manatees in South America and West Africa

    Get PDF
    Aquatic bushmeat can be defined as the products derived from wild aquatic megafauna (e.g., marine mammals) that are used for human consumption and non-food purposes, including traditional medicine. It is obtained through illegal or unregulated hunts as well as from stranded (dead or alive) and bycaught animals. In most South American and West African countries aquatic mammals are or have been taken for bushmeat, including 33 small cetaceans and all three manatee species. Of these, two cetacean species are listed in the IUCN red list as “near threatened,” and one as “vulnerable,” as are all manatee species. Additionally, 22 cetacean species are listed as “data deficient,” hence some of these species may also be at risk. No reports (recent or otherwise) were found for some countries, caution is needed in concluding that aquatic bushmeat is not utilized in these nations. Moreover, although aquatic bushmeat is mostly obtained opportunistically and was likely originally taken only for local consumption, directed catches occur in most countries and may have reached unsustainable levels in some areas. For example, in Peru and Nigeria, thousands of small cetaceans are illegally hunted annually. Reliable, recent data and a better overall understanding of the drivers of aquatic bushmeat will be essential in the development of effective mitigation measures

    Protection from ultraviolet damage and photocarcinogenesis by vitamin d compounds

    Get PDF
    © Springer Nature Switzerland AG 2020. Exposure of skin cells to UV radiation results in DNA damage, which if inadequately repaired, may cause mutations. UV-induced DNA damage and reactive oxygen and nitrogen species also cause local and systemic suppression of the adaptive immune system. Together, these changes underpin the development of skin tumours. The hormone derived from vitamin D, calcitriol (1,25-dihydroxyvitamin D3) and other related compounds, working via the vitamin D receptor and at least in part through endoplasmic reticulum protein 57 (ERp57), reduce cyclobutane pyrimidine dimers and oxidative DNA damage in keratinocytes and other skin cell types after UV. Calcitriol and related compounds enhance DNA repair in keratinocytes, in part through decreased reactive oxygen species, increased p53 expression and/or activation, increased repair proteins and increased energy availability in the cell when calcitriol is present after UV exposure. There is mitochondrial damage in keratinocytes after UV. In the presence of calcitriol, but not vehicle, glycolysis is increased after UV, along with increased energy-conserving autophagy and changes consistent with enhanced mitophagy. Reduced DNA damage and reduced ROS/RNS should help reduce UV-induced immune suppression. Reduced UV immune suppression is observed after topical treatment with calcitriol and related compounds in hairless mice. These protective effects of calcitriol and related compounds presumably contribute to the observed reduction in skin tumour formation in mice after chronic exposure to UV followed by topical post-irradiation treatment with calcitriol and some, though not all, related compounds

    Assessing the feasibility of adaptation options: methodological advancements and directions for climate adaptation research and practice

    Get PDF
    The Paris Agreement put adaptation prominently on the global climate action agenda. Despite a surge in research and praxis-based knowledge on adaptation, a critical policy roadblock is synthesizing and assessing this burgeoning evidence. We develop an approach to assess the multidimensional feasibility of adaptation options in a robust and transparent manner, providing direction for global climate policy and identifying knowledge gaps to further future climate research. The approach, which was tested in the IPCC Special Report on 1.5 °C (SR1.5) to assess 23 adaptation options, is underpinned by a systematic review of recent literature, expert elicitation, and iterative peer review. It responds to the challenge of limited agreement on adaptation indicators, lack of fine-scale adaptation data, and challenges of assessing synergies and trade-offs with mitigation. The findings offer methodological insights into how future assessments such as the IPCC Assessment Report (AR) six and regional, national, and sectoral assessment exercises could assess adaptation feasibility and synthesize the growing body of knowledge on climate change adaptation

    Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review

    Full text link
    corecore